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APPENDIX A
COORDINATE SYSTEMS

A.1 Summary

Judicious choice of a coordinate system is of primary importance
in the analysis of two-body motion. Three basic systems, each related
to the space vehicle's nominal, or reference, trajectory, are defined
in this appendix. The designations of the three basic systems are:

1. Reference trajectory stationary coordinate system

2. Reference trajectory local vertical coordinate system

3. Reference trajectory flight path coordinate system
The orientation of these three systems is specified with respect to

the conventional heliocentric ecliptic coordinate system, which is also
defined.

/

A.2 Heliocentric Ecliptic Coordinate System

~ The heliocentric ecliptic axis system is one of the standard sys-
tems in celestial mechanics. Its origin is at the center of the sun.
Its axes are designated Xpr YR and Zg- The g and Yg axes are in
the ecliptic plane. The Xp - axis lies along the intersection of the
equatorial plane with the ecliptic plane, with the positive direction
being the direction of the sun from the earth at the time of the vernal
equinox (or the direction of the earth from the sun at the time of the
autumnal equinox). The positive Yg -axis is obtained by rotatlng the
positive X@ - axis 90° in the direction of the earth's rotation about the
sun. The Zp -axis is normal to the ecliptic plane and positive in the
direction of the angular momentum vector of the earth's motion with
respect to the sun.



A.3 Reference Trajectory Stationary Coordinate System

The reference trajectory stationary coordinate system, with axes
X, ¥, and z, is related to the nominal two-body path of the space vehicle
in the sun's gravitational field. The origin is at the center of the sun,
The x-y plane is the plane containing the vehicle's reference trajectory.,
The positive x-axis is in the direction of perihelion from the sun, The
y-axis lies along the latus rectum; its positive direction is obtained by
rotating the positive x-axis 90° in the direction of the motion of the
vehicle around the sun, The positive z-axis is in the direction of the
- angular momentum vector of the vehicle's motion relative to the sun.

 The x, Yy, Zz axes may be located with respect to the X@s Yp» 2R
axes by means of the three Euler angles QE, iE’ and Wge QE is the
longitude of the ascending node. It is the angle, measured in the
XpYE plane, between the X -axis and the positive half of the line of
nodes, The line of nodes is the line of intersection between the ecliptic
plane and the reference trajectory plane. The ascending node, which
lies on the positive half of the line of nodes, is the point at which the
vehicle passes through the ecliptic plane in the direction of increasing
Zine

iE is the inclination angle. It is the angle subtended at the
line of nodes hetween the reference trajectory plane and the ecliptic
plane, It is also the angle between the z-axis and the zE—axis. The
range of ip is 090 to 1800°,

wp is the latitude of perihelion, It is the angle, measured in
the reference trajectory plane, between the positive half of the line of -
nodes and the positive x-axis.

The sum of QE and wm is known as the longitude of perihelion and
is designated ¢p. ¢E is sometimes referred to as a '"broken'' angle
because its two constituent parts lie in different planes. ¢E may be
substituted for either g or wp in locating the x, y, z axes,

The angles Qs iE’ and W@ are illustrated in Fig. A.1l,
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A.4 Reference Trajectory Local Vertical Coordinate System

The reference trajectory local vertical coordinate system, with
axes r, s, and z, has its origin at the center of the sun, and its positive
z direction lies along the angular momentum vector of the vehicle's
motion with respect to the sun. In these two respects it is the same
as the reference trajectory stationary system. Also, the r-s plane
coincides with the x-y plane. The two systems differ in that the r and
s axes rotate in the reference trajectory plane, with the positive direc-
tion of the r-axis at any given time lying in the direction of the nominal
position of the vehicle at that time. The positive s-axis is 90° "ahead"
(i. e., rotated in the direction of vehicle motion) of the positive r-axis. 1

The angle between the r-axis and the x-axis at any instant is the
true anomaly f. Thus, the local vertical system is rotating about the
z-axis with angular velocity f.

The positive r direction will be referred to as the radial direction;
similarly, the positive s direction is the transverse direction, and the
positive z direction is the orthogonal direction. The r direction is the
direction of the vehicle's local vertical in the sun's gravitational field.

Because of the way in which the axes are defined, the values of
s and z on a two-body reference trajectory are identically zero for all

values of time.

A.5 Reference Trajectory Flight Path Coordinate System

The axes of the reference trajectory flight path coordinate system
are designated p, q, and z. Like the previous two reference trajectory
systems, this system has its origin at the center of the sun and ité
positive z-axis in the direction of the angular momentum vector of the
vehicle's motion about the sun. The p-q plane is the reference trajec-
tory plane. The positive g-axis is parallel to the relative velocity
vector of the vehicle's nominal motion with respect to the sun. The
positive p-axis is 90° "behind" (i.e., rotated in the direction opposite

to the vehicle's motion about the sun). the positive g-axis.




The angle between the s-axis and the g-axis.is 7, the flight path
angle. The angle is positivﬁev when the positive q-axis lies between the
positive directions of the r and s axes. Since the s-axis represents the
"horizontal' diré‘ction in the reference trajectory plane, v is the
inclination of the flight path to the horizontal.

The angle betviréen the p-axis and the x-axis is g; it is equal to
the difference between f and v. The angular velocity of the p, q, z
coordinate system. about the z-axis is g : which is equal to (i‘ - :Y)-

The orientations of the axes of the three reference trajectory
coordinate systems in the reference trajectory plane are shown in
Fig. A. 2.
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APPENDIX B
CELESTIAL MECHANICS

B.1 Summary

Some of the more important relations in celestial mechanics are
stated, with particular emphasis on those applicable to elliptiéal
orbits, These relations form the foun&ation on which much of the
subsequent analysis is based. Since all of this material is well
known, no attempt is made to supply formal proaofs of the equations
presented, Such proofs may be found in any standard textbook on this
" subject, for ekatﬁpie. in Cfxapters 1 and 2 of Smart( 28).

B.2 Motion of a Small Mass in a Many-Body Gravitational Field
Figure B, 1 shows the relative positions of three bodies, Py P,

and Pl‘ The motion of P is to be investigated under the assumption
that the only forces acting on P are those due to the gravitational
qffects of P0 and Pl’ . _ -

For a space vehicle on an interplanetary voyage, P0 represents
the sun, P represents the vehicle, and P1 normally represents one of
the planets.’

The vector form of the equation of motion of P is

f=s

B p=a 1 1 -
t5r= Gml( 7 4, t 3 El) (B-1)
r d1 ry




P.P_P,

, P — body whose motion is being investigated
Po‘Pl, -~ bodies whose masses affect the motion of P

— three bodies treated as hypothetical point-masses

r,r,,d, — position vectors

~'=1'=1

Figure B,1 Vector Diagram for the Three-Body Problem




The vectors r, r;, and d, are the position vectors of Fig. B.1,
with r, s and d1 being their respective magnitudes. r is the inertial
acceleration vector of P with respect to PO’

The masses of PO’ P, and P1 are mg, m, and m;, respectively,
The quantity 4 is defined by

u =G (m0 + m) (B-2)

where G is the constant of gravitation. ‘

Since m is the mass of the sun and m, is the mass of a planet,
which is very much smaller, the motion of P is due primarily to
PO’ with P1 exerting a relatively mir_lor effect (unless the magnitude
of r is much greater than that of gl). . In astronomical parlance, the
force exerted by P; on P is known as the "disturbing force'', and the
effect of P, on the motion of P is known as a "perturbation'.

In general, there may be many disturbing forces, due to planets
Pl’ P2, R R RN l?n. The vector equation of motion when there are

n disturbing forces is

-1 1
. — R S— . -
. 1 m]_ (d3 .(_1.1 I‘3 £1) (B 3)
R I T

=

+
S

|=

I

]

Q

Mo

B.3 Equations of Motion in Reference Trajectory Coordinate Systems

The vector Eq. (B-3) is a compact form for three component
equations, which can be written in any convenient coordinate system.
In this section the component equations will be written in the three

reference trajectory coordinate systems described in Appendix A,



In the x y z system,

r=xu +ygy+zgz (B-4)
X=£=xgx+y5y+zgz | (B-5)
a=r=xu +yu_+zu (B-6)
=2°Z -X y_y -2z

The symbol u represents a unit vector, with the appended subscript
indicating its direction. v and a are, respectively, the inertial
velocity and the inertial acceleration of the body P,

r2=x%+ y2 + 22 (B-17)
2 2 2 2

di = (x-xi) + (y-yi) + (Z-Zi) (B-8)
2_ .2, 2, 2 i

ro=x"+y + 2 (B-9)

The three component equations of motion may be written in
matrix form as follows:

X ‘ x\ x—x1 x1
. 1] n 1 1

+ = i = -G Z . —_— -v. + — .

Y 3 y =1 g3 Y R
1 1

VA Z zZ-Z Z.

1 1

(B-10)
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In the r s z coordinate system, the projection of the vector rin
the r-s plane is designated p. The r-axis lies along the projection
of r in the r-s plane. The coordinate system rotates about the z-axis

with angular velocity £,

r=pu_ +zu, (B-11)
v=pu +pfu +zu, (B-12)
a=@F-pfu +Gf+2pfHu_+zu, (B-13)
r2 = 92 + 22 (B-14)
2 _ 2 2 2 _
di = (p-pi) + h + (z-_zi) (B-15)
2_ 2 2 2 _
rr=pl+ 8+ z, (B-16)
The component equations are
o e %2 r
PP P PPy P
. n
. “ _ 1 1
pf+2p f —_ =-G.,Z, m —| - s, + — 5.
i r3 121 i di3 i riS 1
z z z-2z; z;
- (B-17)

The p q z coordinate system rotates about the z -axis with angular

velocity g The g-axis is parallel to the projection of v in the p-q

plane,

11




£=p5p+ng+zgz (B-18)
v = (p-qg) Ep-f- (g+ p g) Eq'*‘ zu, (B-19)
=vng+ zu, (B-20)

The angular velocity g may be expressed in terms of p and q
by equating coefficients of 4, in (B-19) and (B-20),

p-qg=0 (B-21)
;-2 B-22
€3 ( )

The acceleration a is given by

a=-gv u +V u_ +7Zu (B-23)

.. blp*aq)

q2 —P

+[pp+ Qg9 p(pa-qp) Ju +zu (B-24)
q qz -q -2
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The distance equations are

P22, o2y 2

(o
1

(p-pi)2 + (q—qi)2 + (z-zi)2

2_ 2. 2. 2
i TP Yotz

o]
]

The equations of motion in the p q z system are

-b(pp.'+q(.l) p
™)
pp+qq+p(pq2-qp)' + £ | q
- q a 3
Oz‘
Z
P-Dy Py
] n 1 |
= - G].El ml ;1-3 q-ql +-;3 ql
i i
Z-Zi Z1

13

(B-25)
(B-26)

- (B-27)

(B-28)



B.4 Two-Body Motion
When there are no disturbing forces, the motion of P is the

classic two-body motion, and the vector equation reduces to

|~

tr& =0 5 (B-29)
r

The acceleration vector and the position vector are now collinear,
Therefore, the motion of P must lie wholly within the plane deter-
mined by the position vector and the velocity vector existing at any
specified time.

The component equations of motion in the x y z coordinate sys-
tem are

.o

b X 0

Vyo|+ & [y =| o (B-30)
r

z Z 0

If the axes are so chosen that z is perpendicular to the plane of the
two-body motion, z is always zero, and the motion of P is completely
described by the first two equations of (B-30), The distance r is then
given by

r?=x2 4+ y2 (B-31)

In the r s z coordinate system, p becomes equal to r for two-body
motion. The equations of motion in the trajectory plane are
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r-rf r
| | + by = (B-32)
rf+2rf r 0 0 |

When the p q z coordinate system is used to describe the two-body

motion,
' rz = p2 + q2 | ‘ (B-33)

The equations of motion in the trajectory plane are

-. .+ L]
p(pp? qq p 0
q
M
+ = (B-34)
e oo - . - -173-
p_2+qg+1L(pq;qp) q 0
q
q

B.5 Integration of Equations of Two-Body Motion

The integration of the equations of two-body motion is most
easily accomplished by using (B-32), The lower equation of (B-32)
may be integrated directly, with the result

r2f=h (B-35)

where h, a constant, is the angular momentum of P per unit mass.,

15



To integrate the upper equation of (B-32), f is substituted for t
as the independent variable, and the dependent variable r is re-
placed by u, where

=1 -
us= = (B-36)

In terms of u and £, the upper equation of (B~32) becomes

2
d” u T : .
+u-s= ’ (B-37)
d £2 h? |
The solution for r is
n?
r= . “ (B'SB)
I'+ecos(f -w

where e and w are constants of integration.

Equation (B-38) is the polar-coordinate form of the equation of
a general conic section, with the origin at one focus. The constant e is
the eccentricity of the conic. w is the angle between the arbitrarily
chosen x-axis in the x-y plane and the major axis of the conic. If new
x and y axes are defined such that the new x-axis coincides with the
major axis of the conic, then the angle between the new axes and the old
axes is w, and (f - w) may be replaced by f in (B-38). The new angle f,

measured from the new x-axis, is the true anomaly.

B.6 Orbital Elements
The component equations of (B-30), the general equations of

motion of the two-body problem, are three second-order linear differ-
ential equations, and consequently their complete solution involves
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six arbitrary constants. The six constants may be the three components
of position and the three components of velocity occurring at a specified
time, or they may be three components of position at each of two speci-
fied times. There are many other groupings of six constants that may
be used. -

A grouping that is widely used in celestial mechanics is one known

as the six orbital elements, These elements are:.

1. a, The semi-major axis of the conic section
2. e, The eccentricity of the conic section

3. @, The longitude of the ascending node

4. i, The inclination of the trajectory plane

5. w, The latitude of perihelion

6. tO’ The time of perihelion passage

The elements a and e determine the size and shape, respectively, of
the conic section.

The angles 2 and i determine the orientation of the trajectory
plane, and angle w locates the axes of the conic section in the trajectory
plane. If the standard coordinate system to which the three angles are
referred is the heliocentric ecliptic system, the three become QE’ iE’
and w g which are defined in Section A. 3 and illustrated in Fig. A.1l.

The element tO relates position on the trajectory to some arbi-
trarily chosen time reference, known as the epoch; tO is the time, re-
lative to the epoch, at which the vehicle passes through the perihelion
point,

Choices other than these given above may be made for the orbital
elements., Obviously, any choice of a new element may be expressed
as a combination of those elements already listed.

By convention, the range of e is limited to zero to infinity, while
a may take on any value from minus infinity to plus infinity. The

basic form of a particular conic section is determined by the values of
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e and a associated with it, There are three basic forms, hyperbolas,
parabolas, and ellipses. If e is greater than one and a is negative,
the trajectory is hyperbolic; if e equals one and a is infinite, the tra-
jectory is parabolic; if e is less than one and a is positive, the tra-
jectory is elliptical.

In the present analysis, which is intended to be applicable pri-
marily to the midcourse phase of interplanetary voyages, only

elliptical forms are considered in detail.

B.7 Geometric Properties of the Ellipse

The polar form of the equation of a conic section, with the origin

at one focus, is

o
r = T¥ocosT (B-39)

where the constant £ is the semi-latus rectum. £ is the value of r

corresponding to
_ I
f=+ -
In terms of a and e,

L =a(l-ed (B-40)

When the conic section is an ellipse, its equation in rectangular

coordinates, with origin at one focus, is

x+a® ¥ . 1 (B-41)
T a2 p?
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b is the semi-minor axis of the ellipse,
9 1/2 :
b=a(l-e") (B-42)
The linear eccentricity c is defined by

c=ae (B-43)

¢ is the distance along the major axis from the center of the ellipse
to either focus, The lengths a, b, and c are related by the equation

a®=b"+ c  (B-44)
The sum of the distances of any point on the ellipse from each
of the two foci is equal to 2 a,

The quantities introduced in this section are shown in Fig, B, 2,

B.8 The Anomalies

The true anomaly has been introduced in Section B,5. Two

other anomalies that are widely used in celestial mechanics are the
eccentric anomaly E and the mean anomaly M,

The geometric construction required to obtain the eccentric
anomaly is imdicated in Fig, B.3. The eccentric anomaly is related
to the circle of radius a circumscribed about the ellipse whose semi-
major axis is a,

The mean anomaly varies linearly with elapsed time t,

M=n( - to) (B-45)

where n'is a constant known as the mean angular motion, n is the

average angular velocity of the space vehicle in its elliptical orbit
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BOB'

LFL'
P

OA =
OB =
FL =

n

OF

OA'

OB'

Bl

center of ellipse

foci of ellipse

major axis

minor axis

latus rectum

arbitrary point on ellipse

-

-

1

a = semi-major axis

b = semi-minor axis

n

FL' = /= semi-latus rectum

Or"

=

¢ = linear eccentricity

J AFP = f = true anomaly

F'P + PF = 2a

Figure B.2 The Ellipse
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APA' _— elliptical arc with semi-major axis a
AQA' — circular arc of radius a
O — center of ellipse and of circle

F,F' — foci of ellipse
P — arbitrary point on ellipse
QPR L A'A
<JAFP = { = true anomaly
JAOQ = E = eccentric anomaly

Figure B.3 Graphical Construction of Eccentric Anomaly
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about the sun.
n-= —P— (B"46)

where P is the period of the trajectory.
The constant t; in Eq. (B-45) is the time of perihelion passage,
the sixth orbital element of Section B. 5.
An alternate form for Eq. (B-45) is
M=nt+ M, (B-47)
where M, = - ntg (B-48)
M0 is the value of the mean anomaly at time t = 0, M, is sometimes
used in place of tO as one of the orbital elements.

The true anomaly and the eccentric anomaly are related by the
following series of equations:

a(l—e2)
*TrecosT -2 (l1-e cos E) (B-49)
x=rcosf=2af((os E -e) (B-50)
L
y=rsinf=a(1—e2) 2 6in E (B-51)
(1 + e cos f) (1-ecosE)=1-e2 (B-52)
1 1y
2,72 2, /2 .

. _ (1-e%)  sinE . _(1-e9) sin _
8in f = 1 -¢€e cos E sin B = T1+ecost (B-53)
_cos E - e _ cosf+ e _
cos f = F——ee0 cos B = y——oc (B-54)
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The eccentric anomaly and the mean anomaly are related through

Kepler's equation,

M=E -e sin E (B-55)

The eccentric anomaly serves as a bridge relating the geo-

metric variable f to the dynamic variable M (or t).

B.9 Dynamic Relations for- Elliﬁtiéal Trajectories
The derivatives of the three anomalies are

M=n (B-56)
— n _ n(l+ e cosf) _
"1 -ecos E ~ 1 2 (B-57)
- e
1
f-0n (1 - e2) f2 _ n(l +ecos f)2 (B-58)
2 K
(1 -e cos E) 1 - 62) 2

It is interesting to note that M is equal to a constant, r E is
equal to a constant, and r2 fis equal to a constant,

: (B-59)

1
272 (B-60)

2t -h=na2(-ed

A comparison of Eq, (B-38) with Eq. (B-39) indicates that
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2 h
- = 2 -61
a(l-e%) m (B-61)

and therefore,
i =n"a (B-62)

The differentials of E and f may each be expressed in terms of
the other.

Y

2,712
(1 -¢€9 df _
dE = 1+ ecost (B-63)

1

2.2
gf=1-e) dE (B-64)

1 -~-ecos k&

The velocity components in the radial and transverse direc-

tions may be written in a variety of ways.

v =id=naesinE - nae sinf
r 1 -ecos kE ;/2
(1 -¢e°)
2 in E
-ha esin =2 esinf (B-65)
T h
1
-rf=h =na(l-ez) 2 _naf(l+ecosf)
Ve © T 1-ecoskE zﬁ
(1-e“% "2
=K. (1_62) =% (1 + e cosf) (B-686)
“h 1 -e cos & h
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The square of the total orbital velocity is
2
v2=“7 (1+ 2ecosf+ ez)
h

= i <§ -3) (B-67)

In the literature of celestial mechanics, Eq. (B-~67) is known as the
"vis viva integral",

The orbital velocity may be expressed in terms of either E or f,

1
v=% (1 + 2ecosf+e2) 2 (B-68)
1/2
-na (1 + e cos E)ll (B-69)
2

(1 - e cos E)

The total energy per unit mass is the sum of the kinetic energy
T and the potential energy U.

= = 2_ K - _ B -
H=T+U=5 v’ -% 5 (B-70)

a

oof —

The total energy is a function of only one of the six orbital elements,
the semi-major axis a.

The velocity components in the x and y directions can also be

expressed in many forms,
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T " T -ecosE ='_'_—_—f/— sin f
2,12
(1 -e“
= - &rs_in_g = -% sin f (B-71)

V. =y=vcosg

y

1

2,12
_na(l-e”) “cosE _ na
= —=T T (cos f + e)

2,72
(1 -e°

_h yy -
=— cosE H(C_OSf+ e) (B-72)

In the flight path coordinate system the velocity components are
simply

v. =0 (B-173)

V.=V (B-74)

The velocity component equations may be used to determine the
simple trigonometric functions of v and g.
. _Vr_ e sin E _ e sinf

sin vy = T’— = 1/ =

(1 - e2 cos2 E) 2

I
(1+ 2ecosf+ e2) 2

(B-175)
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Y
v 2,772
COS'Y=—v§= (1 -e%) — - 1+ ecosf (B-176)

. L
(1 - e? cos? E) 2 (1+ 2ecost+ e

v .
sin g = - T:i - sin E - - sin f — (B-77)
(l-ezcoszE)‘2 (1+ 2ecosf+ ez) 2
M (1-e? 2 f+
cos g = _VX _(1-e") cos IET ___ cos e " (B-78)
(1--e‘2c:os2E)2 (1+2ecost+ e ?
The angular velocities 7 and g are
2,112 2
= n(l-e”) ecosE -he(l+ecosf) (cosf+ e)
2 3/
(1 -ecosE)(1+ecosE) (1-e2)2(1+2ecosf+e2)
(B-79
1/2
b= n(l-e? _ n(l+ e cosf)>
- 2 ) 3]
(1 -ecos E) (1 + e cos E) 1-e2)2(1+ 2ecosf+ e
(B-80)

The position components in the flight path system may be ex-
pressed in the following ways:

. _h
P=rcosy=xcosg+ysing=_
Yy Y]
_a(l-»ez)2(1-—ecosE)42 - a(l-ez)
- T 1y
(1+ecosE)/2 (1+2ecosf+e2)2

(B-81)
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q=rsin'y=-xsing+ycosg=%tan‘y

19

-2aesginE (1 -e cos E) a(l-edesint

y 2.1y
(1+ ecosE)'2 (1+ecosf)(l+2ecosf+ e

(B-82)

From (B-66) and (B-81), two alternate forms of the angular
momentum equation are

h=rvs=pv (B-83)

The components of acceleration in the three coordinate systems
may be obtained from (B-10), (B-17), and (B-28),

_.a- 02.. lJ -
a,=r-rf®=-5% (B-84)
r
as=r'f'+ 27rf=0 (B-85)
_on-— l -
a =X = -u (B-86)
r
=c=_ l. -
ay y ur3 (B-87)
a =-gv=-R2®P+*aq)_ _ b (B-88)
P q2 r3

q q i .3
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APPENDIX C
GRAPHICAL CONSTRUCTIONS

C.1 Summary

The review of the equations of celestial mechanics in Appendix B
has led to the development of two interesting graphical constructions,
The fixl'st is an approximate representation for the mean anomaly and ‘
when the eccentricity e is less the 0,5, The second is an exact method
for determining velocity in an elliptical orbit, These constructions are
thought to be novel and are presented here as a by-product of the pri-
mary analysis with the thought that they may be of value as class-room
demonstrations,

C. 2 Graphical Representation of Mean Anomaly

The conventional geometric interpretation of the true anomaly and
the eccentric anomaly is given in Section B, 8 and Fig, B,3, It would
be desirable to get a similar representatioh of the mean anomaly, M,
so that one could see graphically the relation between the angular motion
and elapsed time. Unfortunately, no simple, exact geometrical con-
struction is known for the mean anomaly. It is the purpose of this
section to show a simple, though inexact, method of obtaining the mean
anomaly graphically,
Figure C.1, which illustrates the method, is an extension of Fig, B, 3,
The construction is as follows:
. 1. From the focus F lay out FH parallel to OQ and meeting the
circumscribed circle at H.
.2, Connect the center O with point H by a straight line.

29



<JAFP = {f = true anomaly

JAOQ = E = eccentric anomaly
CFH |1 0Q
FL10Q, HK 10Q, FL || HK
" OF =c = ae = linear eccentricity
HK = FL = ae sin E
OA=0OH=0Q* a

QHOQ " sin-'l(gg )= sin'l (e 8in E) -

M = JAOH = 4AOQ - JHOQ = E — sin” }e sin E)
= approximation of mean anomaly

Figure C.1 Graphical Approximation of Mean Anomaly
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Then angle AOH is equal to M, the approximation to the true anomaly.
In order to prove this statement, two auxiliary lineé, FL and

HK, are drawn, Both of these are perpendicular to OQ, and therefore,

they are parallel to each other, From the figure,

HK = FL = OF sin E = ae sin E (C-1)
§ HOQ = sin™" (—pi-) = sin”t (2250 E,
= sin™* (e sin E) (C-2)
M= § ACH = § AOQ - ¥ HOQ
=E - sin—l (e sin E) (C-3)
The exact equation for the mean anaomaly is
M=E -e sinE (C-4)
The error in the approximation is (
AM=M- M= e sinE - sin” ! (e sin E)  (c-s)

The maximum magnitude of the error for a given e occurs when

IAMlm =e—sgin e N (C-86)
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For eccentricities up to 0.4, | A M| max is less than 1°, For
e=0.5 itislg". o
It may be seen from Fig, C,1 that for

0<f<m, M<EKT (C-1)
for

T<f<2rm, f<E<M (C-8)
for _

f=0 , E=0=M (C-9)
for

f=m E=7=M (C-10)

C.3 Graphical Solution for Crbital Velocity and Its Components

. The objective in this section is to determine graphically the vel—
ocity at point P on an elliptical trajectory for which a, e, and n are
known, :

In Fig. C.2, the known trajectory is APBA'B'A. The steps in the
graphical construction are the following: - | | o
1, With focus F as center and with radius a, describe a circle.
2. Extend the radius vector FP through P until it intersects
the circle at R.
3. Draw a straight line connecting the center of the ellipse
at O to R,
The length OR is proportional to the orbital velocity at P, The
constant of proportionality is
Vo

(1 — ez)
n

To prove these statements, several additional lines are drawn..
FR is extended through F until it meets the perpendicular dropped
from O to the extension of FP, The two lines intersect at S. Then,
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APBA'B'A

— ellipse with center at O, foci at F and F', and
semi-major axis a = OA

CRBC'B'C _— circle with center at F and radius a

P — arbitrary point on ellipse

OSs 1 SR
1/2
2
OR = ———-—-——-——(1_?1) v
21/2 21/2
. (1-¢e") . (1 -¢7)
Os = = v, . SR o Ve
1/2 1/2
2 2
(1 - e") . (1 -¢%)
OD =~ ooV, OE = A vy

qJAFR = f = true anomaly
<JORS = Y = flight path angle
JROA=f-vy=g

Figure C.2 Graphical Determination of Orbital Velocity and
Its Components
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FR=a ‘ (C-11)

OF =ae (C-12)
|
| J AFR = 4 OFS = f (C-13)
In the triangle ORS,
SR=2a(l+ecosf) (C-14)
OS=aesinf (C-15)
s

|
i OR=a(l+2ecosf+ ez) (C-16)

When the last three equations are compared with Eqgs, (B-66),
(B-65), and (B-68), it is apparent that

1
sR =12 v - (l_-n_ez_)_f v (C-17)
os=1-¢e)" _ne2)1/2 v, (C-18)
OR = Q_Zn_e_z.i/f v (C-19)
Also,
4 ORS = tan™? (gRS—) = tan™t (;:—) = (C-20)
JAOR=f - vy=g (C-21)
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| By constructing the lines RD and RE parallel, respectively, to
the major and minor axes of the ellipse, it is easily seen that

1 1
2,72 2,12
_ . _(1-e9 . __(1-¢e% _
OD = OR sin g = = vsing=->—p-—— v (C-22)
1 1
_ Y _@-e)"?
OE = OR COS g = ——pf—— V CO8 g = Vy (C-23)

The angle between the positive p-axis of the flight path coordinate
system and the positive x-axis is g. Therefore, OR in Fig. C, 2 has the
direction of the p-axis associated with point P on the trajectory. Since
the direction of the orbital velocity vector is along the positive q-axis,
the direction of v may be obtained by rotating OR count er-clockwise
through 90 degrees. Similarly, the directions of the velocity components
may be found by rotating the corresponding lengths in the figure 90 degrees
counter-clockwise,

The circle CRBC'B'C provides a simple means of visualizing the .
variation of the magnitude of the orbital velocity in an elliptical trajec-
tory. As point P progresses on the ellipse, point R progresses on the

circle, and OR is a continuous measure of v.
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APPENDIX D
ELLIPTICAL CYLINDRICAL COORDINATES

D.1 Summary

Elliptical cylindrical coordinates are known to be particularly
well suited to certain problems involving either ellipses or hyper-
bolas. Consequently, the applicability of this curvilinear coordinate
system to the problem of guiding a vehicle traversing an elliptical
trajectory has been investigated.

It is shown that there is an interesting relationship between the
elliptical system and the flight path system described in Appendix A.
The tangents to the three coordinate curves of the elliptical system
are parallel, respectively, to the p, q, and z axes. of the flight path
system. —

A comparison of the elliptical system with the reference trajec-
tory rectilinear systems of Appendix A indicates that the curvilinear
system has definite advantages for studying motion along a known,
fixed elliptical trajectory. On the other hand, the curvilinear system
offers no advantage in the study of the variation of an actual trajectory
from a known elliptical reference trajectory. Since the guidance pro-
blem is primarily a problem of the latter type, the elliptical cylindri-

cal system has not been used in the ensuing analysis,

D.2 Basic Coordinates in the Elliptical System

The analysis presented below is based on Sections 6. 16 and 6. 17

of Hildebrand 41, with associated problems 6. 25 and 6. 26.
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Elliptical cylindrical coordinates @, B, z are defined by the equa-

tions

Xq = k cosh o cos B (D-1)
Yy = k sinh & cos B (D-2)
zZ =gz (D-3)

where k is a constant and Xy» ¥, 2z are conventional Cartesian coor-
dinates, T}he reason for the use of Xq instead of x is explained later
in this section,

From (D-1) and (D-2),

2
X 2
5 0 3 + ) Y = cos2 B+ sinz B=1 (D-4)
k™ cosh” a k™ s8inh® «

If o is a constant, Eq. (D-4) is the equation of an ellipse with
the origin at the center of the ellipse. The axes of the ellipse are

given by

a2 = k2 cosh? o (D-5)

a2 (1 - e2) = k2 x~3inh2 a (D-6)

oy
"

k2 may be determined by subtracting (D-6) from (D-5).

2 2 2 2

k% (cosh? q - sinh? @) = k2 = a2 e (D-17)

With the positive sign being chosen for the square root, k becomes
equal to the linear eccentricity "

k = ae (D-8)
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By substituting (D-8) into (D-5) and (D-6) and again taking the
positive sign for each of the roots, cosh o and sinh o« can be expressed

in terms of e.

cosh o = 1 (D-9)
€ 1
)

sinh a = (1_-€e__)__ (D-10)

Since the origin of the elliptical coordinate system is at the
center of the ellipse rather than at one focus, the quanfity Xq in
Eq. (D-1) is not the same as x in the Cartesian system of Appendix

is

A. The equation relating x to X

X =Xy - ae (D-11)

The coordinates:y-andz in Eqs. (D-2) and (D-3) are the same as y
and z in the Cartesian system of Appendix A.

Equations (D-8), (D-9), (D-10), and (D-11) may be incorporated
into (D-1) and (D-2).

a (cos B - e) (D-12)
1
a(l - e2)§ sin B (D-13)

b
]

y

When Eqs. (D-12) and (D-13) are compared with Eqs. (Br50) and
(B-51), it is apparent that the coordinate 8 is equal to the eccentric

anemaly E,
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Thus, the elliptical cylindrical coordinates o and 8 for an
elliptical path are given by
1
tanh "1 (1 - 22 (D-14)

Q
i

B=E (D-15)
The advantage of this coordinate system lies in the fact that, of the
three coordinates a, B, and z, only 8 is a variable when the path is

an ellipse with axes in the directions of x and y.

D.3 Coordinate Curves and Tangent Vectors

The curve obtained by holding two of the three coordinates in a
curvilinear system fixed and varying the third is called the coordinate
curve of the third coordinate. A tangent vector is defined as a vector
tangent to a coordinate curve at a given point and positive' in the direc-
tion in which the value of the varying coordinate is increasing,

In this section, it will be shown that the tangent vectors of the
elliptical cylindrical coordinate system are parallel to the axes of
the flight path coordinate system.

The tangent vectors in the o, 8, z system are designated W _v!B,
W > respectively. The corresponding unit vectors are u , ug and u_.
Similarly, u, and Ey are unit vectors in the x andy directions,

The radius vector r may be written as

+zu (D-16)

r=xu
— = z

x TVl

X

ae (cosh acos B - 1)u

+ ae sinhasiany_y+ zu, (D-117)
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The three tangent vectors are

0 .
w =—£——=aesinhacosBu + ae cosh asin B u
-a OJdo —-X =
1
=a(1-e2)2 COSEI_J-X'FB.Sil’lEEy (D-18)
_or i + inh
‘XB-GB =-aecoshasinBu, +aesinhacosfu
1
_ . 2,2
--asmEEX+a(1-e) cosEEy (D-19)
Jr
VlZ:az =u, (D-20)

The magnitudes of the tangent vectors are

1
_ _ 2 . 2 2 2 2 2z
Iyal-lyﬁl—[a sin®E + a“ (1 - e cos“E]
1
=a (1l - ez cos2 E)-Z (D-21)
lw | =1 (D-22)
-z
The unit vectors are
1
2,2 .
u = L -e)”cosE sin E u (D-23)
- 1 =-x 1 <y
(1 - e2 cos2 E)g (1 - e2 cos2 E)-2
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1

) 2,2
_ sin E (1 -e“)" cos E .
EB- rEX+ _1_ u (D-24)

(1 - ezcos2 E)2 (1 - e2c082 E)2
- (D-25)

It may easily be verified that

U, lg=u,-u,=ug-u =0 (D-26)
and therefore the elliptical cylindrical coordinate system is an
arthogonal system,

The orientation of the Ea' and EB vectors with respect to the
Cartesian axes x and y may be obtained by forming the dot products
of u, with u. and Ey'

1

2.2
cos (@, Xx) =u + u_ = (1-e7)"cos E (D-27)

2

(1 - e2 cos2 E)

sin E

cos (a, y) = sin (a, x)=ga . Ey =

(1 - e2 cosZE)
(D-28)

where (a, x)isthe angle between u, andu_, and (o, y) is the angle

between u and u_.
—_ _y
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Cuwparison of (D-27) and (D-28) with (B-78) and (B-77), re--
spectively, indicates that the angle between u, and the x-axis is equal
tc g, the angle between the p-axis of the flight path system and the
x-axis. Therefore, u, is parallel to the p-axis. Similarly, EB is
parallel to the q-axis, and u, is parallel to the z-axis. Thus, it
has been proved that the tangent vectors of the o, B, z system are
parallel to the axes of the p, q, z system,

This result may be verified by the following deductive process.
The f coordinate curve for an elliptical path is obtained by varying
E with e and z held constant. This curve is the ellipse itself, and
its tangent vector at any point is tangent to the ellipse at that point.
The q-axis of the flight path system was chosen to be parallel to
the instantaneous orbital velocity vector, and this vector is also
tangent to the ellipse at any given point. Thereforg, EB must be
parallel to the q-axis. Moreover, u, is obviously parallel to the
z-axis. Since EB is parallel to the g-axis, and u, is parallel to the
z-axis, and both the elliptical cylindrical coordinate system and the
flight path coordinate system are orthogonal systems, it follows that
u, must be parallel to the p-axis.,

These results may be summarized mathematically in the follow-

ing two equations:

u_=u (D-29)

=u (D-30)

where .‘ip and Eq are unit vectors along the p and q axes, respectively.
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D.4 Evaluation of the Elliptical Cylindrical Coordinate System
In the elliptical cylindrical coordinate system, the differential
change in the radius vector along a known trajectory is

d£=vlada+ledB+\iv_zdz (D-31)

When the trajectory is an ellipse,

da=0=dz (D-32)
Then,
1
d£=\£BdB=a(1—ezcoszE)EdEEB (D-33)
The deviative of r with respect to t is
4 1
m-—ll- =a(l - ez coszE)EE') EB
1
na(l+ e cosE)g
= _l.lB = v (D-34)
) A

(1 - e cos E).Z

Equation (D-34) represents a simpler, more elegant method of
deriving the velocity along an elliptical trajectory than any obtainable
by the use of rectilinear coordinate systems, It is in studies of this
nature, involving the dynamic or geometric characteristics associated
with a known ellipse, that the elliptical cylindrical coordinate system
shows to good advantage.

43



The guidance problem is primarily concerned not with the differ-
ential d r, but rather with the variation § r. It is important to dis-
tinguish between these two quantities. The differential d r is the
infinitesimal change in the position vector r due to an infinitesimal
displacement along a known reference trajectory, The variation
6 r is the small difference between the radius vector for an actual
trajectory at a given time and the radius vector for a known refer-
ence trajectory at the same time,

When an elliptical cylindrical coordinate system is used in
conjunction with an elliptical reference trajectory, the differentials
of a, e, o, and z are all zero., However, the variations of a, e, a,
and z need not be zero, and in general they are not. Thus, the main
advantage of the elliptical system, the fact that d o« = 0, is of no
consequence when the problem being studied is a variational problem.

The first variation of r is

dr=6xu_+éyu_+ 6zu
- ' -y -z
= 6 (ae cosh acos 8 - I)EX
+ 6 (ae sinh o sin f3) _Lly'i' bz u, (D-35)
or or or
=e—— fa+ — e+ —m§ «
da de a
oL s g+ X (D-36)
+ = + =5 -
N P

This formulation for é r offers no advantage over that which can
be obtained from any of the three reference trajectory rectilinear co-
ordinate systems of Appendix A, Since the coordinate variables in the
rectilinear systems are more familiar than those of the elliptical sys-

tem, no further use will be made of the elliptical system in this analysis.
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APPENDIX E
VARIANT EQUATIONS OF MOTION

E.1 Summary

The variant equations of motion of a vehicle in an n-body gravita-
tional field are developed first in vector form and then in component
form for the three different reference trajectory coordinate systems.

A simplified matrix notation is introduced which indicates that the
variation in acceleration is related to the variation in position by means

of a symmetric 3-by-3 matrix.

E.2 The Variant Equation in Vector Form

The vector form of the variant equation of motion is obtained from
Eq. (B-3) by taking the first variation with respect to r at a fixed time.
On the left side of (B-3),

6 (55 = £ (-3rér+rer) (E-1)
r r

where the symbol é signifies the first variation.
On the right side of (B-3),

G m, - G m,
6 (- 3 f'li)=' _az_ (-3g_ibdi+d16g1) (E-2)
i i
From Fig. B.1, '
diy=r-r; : (E-3)
Since T, is unaffected by a variationinr,
6d, = ér (E-4)



Then,

G m. G m.

6 (- 1 od.)=
df’ =i

pv: ;- d;6r) (E-5)
i

The variation in the last term of (B-3) due to 6£ is zero.

The variant equation in vector form is

6T =-t; (3rér-rér

n
+Gz
=1

i

(3d, 6d; -d, ér) (E-6)

" ,,>| 8

E.3 Variant Equations in the Reference Trajectory Coordinate Systems

Since the x, y, z coordinate system is non-rotating, ér and'6£
are obtained directly from (B-4) and (B-6).

6£=6x1—1‘_x+6y3y+6zgz (E-T)
5£= 6X'EX+6y‘Ey+5ZEZ (E-8)

ér and 6d_are derived from (B-7) and (B-8).
i

X z
6r= 2 sx+ L oy +Z 6z (E-9)

(x - x) v -y (z - z)
———d——6x+—d—6y+ —q— %z (E-10)
1

Equations (E-7) through (E-10) are substituted into (E-6), and the
resulting equation is written in matrix form.
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6% x2 Xy Xz
e *
oy =¢ K 3 yXx y2 yz | - r2 I3
r
6z ZX zy z2
.
N
- ) | -
fx - xi) (x - xi)(y -yi) (x - xi)(z - Zi) 5%
-—rl m 2 2 * !
N i ) ) o ) ) ) .
1= i
Mo - Y |
(z - zi)(x - xi) (z - zi)(y yi) (z zi) 6z/
P
(E-11)
PO

where I3 is the 3-by-3 identity matrix., An asterisk above a capital letter
indicates that the letter represents a matrix,

Equation (E-11) may be written more compactly as follows:

o-= “ T— T *
6r [—5-(3££ r-rl)

— = 3
r
n
m, *
+ G -—5£ (351-19’1‘1"9-’11‘9113) } 6r (E-12)
d
1=]1 i

where r, 91* and ér are three-dimensional column vectors and the super-
script T indicates the transpose.

The expression inside the square brackets in (E 12) is a symmetmcal
3-by-3 matrix which is designated G

.o *
ér =G or (E-13)
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In the r, s, z coordinate system, rotating with angular velocity f,

. 8a is obtained by subtracting (B-13) from (E-16).

= + o
r+ér (p+6p)2r+6sgs+(z Z).‘lz

X+6X=(b+65-§6s)}ir

+@s+pt+isp)u_ +(z+sB)u,

£+6§-(b'—pfz+6ﬁ-§26p-2?65

-1 68) u. + (pf+2pt+2f6p+fép

+ 65 - 12 ss)u_+(z+62) u,

6a = 8r = (8p - I

2

sp-2f68-Tos)u_

+(2t8p+Top+os-126s)u_+0%u,

Then Eq. (E-12) may be written as

6p - f

5p - 2768 - f 65

27 6p+Top +65 -2 63

o

n
my
+Gz _.Ti.s_
1=]1 i

6%

(o - 401)2

3 = si (p "Pi)
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p .0 pz
0 (4 0
zZp 0 z2

(p- p )z - zi)
-si'(z - zi)

(z - zi)2

(E-14)

(E-15)

(E-16)

(E-17)

(E-18)

6p
6s

6z




A similar development can be carried out in the P, q, z coordinate

system, which rotates with angular velocity g.

The resulting equation is

: ”
) = s
s «2 * v me 2
6b - g% ép-2g6G-Féq P° pPq pz .
2g6p+gbp+oq-gloq |=< £1s @ @@ q| -ril
LY . r
' 6z zZp zq z2
~‘ o ’ —y
-)
n (p-py)° (p-p)a-q) (p-p)z-z)
my | 2 2 *
+GZI 5 3 (q-qi)(p-pi) (q-q;) (q-q)Mz-2z) -d; I
- 1= i 2
(z - ;i)(p -p)  (z- z;)(q - qi) - (z-z)
- - e
(E-19)
E.4 Symmetry of Matrix G
. ~ An interesting phys1ca1 explanation of the symmetry of the matrlx
'G in Eq. (E-13) has been given by McLean, Schmidt, and McGee. *
Since all the forces being considered are gravitational, a scalar
potential V may be defined such that
r=v v (E-20)
where V signifies the gradient of a scalar quantity, In matrix form in
the xy z coordinate system,
.s oV
X Tx
v |- g_Vy (E-21)
oy Vv
7z

%
Page 34 of Reference (13).
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The. variation in ;( is

00= @l ax , ax
6x 3% ox + 5— ay 5y+-a—- 6z
2 2 ' 2
= oV 6X+a_"v_ 5y+ _.a_.l 62 (E-22)
—3 ‘ _
ox oy ox 0z 0x o

_"Analogous equations may be written for 85 and 6%, Then the vector 6

is given by
7= | 8y g?;’ %iz"a‘i by (g-za)
e . o2

A comparison of (E-23) with (E-13) indicates that the 3-by-3
matrix in (E-23) is G and that its symmetry is due to the fact that

2y . 2
F—T"i Vr = g%‘—%—: i, j, =1 2, 3 (E-24)
7] 197

where ry and rJ are components of r.

*
Thus, as long as the force field is conservative, the matrix G
relating 6r to &6r is symmetric. The inclusion of the effects of earth

oblateness in the analysis does not affect the symmetry of G

$0




APPENDIX F
GENERAL MATRIX FORMULATIONS

F.1 Summary

Several different types of matrix formulations are introduced to
represent the solution of the variant equations of motion. The inter-
relationships among the various matrices are developed. A method
is indicated for evaluating the terms in the matrices by the use of
numerical integration. Some interesting syminetry properties of the
matrices are proved. The symmetry properties are used to find the

inverse of the basic 6-by-6 matrix by inspection.

F. 2 ©Path Deviation

Just as the solution of the general equations of motion involves

six constants, so does the solution of the variant equations of motion.
The analogy may be carried further. It was pointed out in Section B. 6
that the six constants in the general solution may be the three compo-
nents of position and the three components of velocity occurring at a
specified time; in the variant solution the constants may be the varia-
tions in the three components of position and the three components of
velocity occurring at a specified time. The constants in the variant
solution may also be the variations in the components of position at

two different specified times. If the motion is two-body motion, varia-
tions in the six orbital elements may be used. Any one of these group-
ings of six constants may be regarded as a six-component vector. This

type of vector will be referred to as the path deviation vector,
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The mathematical representations for the three classes of path

deviation vectors mentioned above are

6_{'k
(1) < >
6Xk
”
6r; T
(2) ¢ S
‘ or.
—J
\ Ve
(3) be

6£k and 6v, are, respectively, the position variation and the
velocity variation at time by They may be grouped together into a
single vector, which will be designated 6X - ér; and 6£j are the
position variations at times ti and tJ.. ée consists of the variations
in some grouping of six orbital elements,

The three different path deviation vectors may be related to each
other as follows:

~ N
or
* * —k * *
se = {R, V. }< >= (R V. } éx, (F-1)
6Xk |
~ 7
* *
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where

w
Q)‘Q)
*ﬁhm

(F-3)

5\1 = constant

k

<3
[1]

(3]

[®

(F-4)

-
)|
I<

k [Ty = constant

o
QO
Al 1o

(F-5)

63;] = constant

/
/
2

* % * e * %
Rk, Vk, Hij and Hji are all 6-by-3 matrices. The subscript k in Rk and Vk

indicates that the elemerits of the two matrices are functions of tk' Similarly,
the elements of ﬁij and Hji are functions of ti and t..

F.3 Variation in Position

The variation in position at any arbitrary time t , may be ex-
pressed in terms of the path deviation vector.

sz = E:m se (F-6)
5k S 5
=Fn (R Vi ) ooxy (F-7)
b3 sk b3
=F {Hij Sr. + Hji 6£j} (F-8)
* *
= M Ny Poxy (F-9)

93



where

* or ' :

Fm R - e : (F-10)

* or

Mmk = a = m , (F‘ll)
=~k |8 _x_'k= constant

_— or '

Nok =477 m (F-12)

= = constant
by, = co

% B
F__is a 3-by-6 matrix. M
m mk
Since the elements of the path deviation vector are independent

of each other, it is apparent from (F-7), (F-8), and (F-9) that

« _
and N are 3-by-3 matrices.
mk

*

* % * B *
Fk Rk = Fi Hij = Mkk_ 13 (F-13)
Aok * Kk * *
F V, =F, Hji = N, = Ogq (F~-14)
sk
where O3 is the 3-by-3 zero matrix,
In general,
3 * Ok
Mmk h Fm Rk (F-15)
* * % _
Nmk =F Vk (F-16)
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N .
Equation (F-15) indicates that M mk® Whose elements are functions of
both t and tk’ .can be written as the product of two matrlces. the
elements of one being functions solely of t and the elements of the

second being functlons*solely of t A 31m11ar statement may be

k

made with respect to N__ .
mk

F.,4 Variation in Velocity

The variation in velocity at time ty 18

& .
6!m = Lm 6_8_ _ (F.-17)
* * * Y
= _Lm Rk .Vk 6§k : (F-18)
* %
=z Lm {HIJ 6r + H]i 6rJ} ' (F-19)
% %
where
‘* 0 Y
Lm = TE—- (F-21)
* ov
S .= 3——-‘“‘ (F-22)
mlk { LS 6Xk = constant
* 0 Yen
T .= — (F‘23)
mk 0 ¥k érk = constant
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From (F-18) and (F-20),

S -=L_R (F-24)
Smk = Tm Bk : '
* % ¢ —
ka = Lm Vk (F'-25)
The equations corresponding to (F-13) and (F-14) are
* " * | 6
Tkksz Vk_13 | (F-26)
* * % *
When tm = ti‘ Eq. (F-19) becomes
I *
6y =L;qH;y6r; + Hy ér, (F-28)
* *
=J..é6r.+ K.. 6r . (F-29)
ij —i ij —=j
where
* * K 321 (F-30)
J..=L, H,. = r -
1 14 r; 653. = constant
< =L H ar_!i (F-31)
K..=L. H -
4 1 I-'-j 631 = constant
* *

Jij and Kij are 3-by-3 matrices,




_ (F-Zg) may be solved for ér j by pre-multiplying the terms of the
equation by K, j '1, where the superscript -1 indicates the inverse of a
square matrix. .

L -1 T "f 32)
- Kij {"’J-. .3} G_X_i (F"

’ % * -1 * ] 3)
* ' %* -1 ' . 4)

The path deviation vector at time t, j may be expressed in terms
of the path deviation vector at time t, as follows:

O N RN
63'_3. : Mji Nji
, 5)_(_j = ) = < . : *' ) 6_)£i= é]l 551 | (F-35)
6y_j Sji Tji '
N A S p
-where
. _ N
* *
) Mji Nji x.
C..= ¢ R gt § (F-36)
i * . {aii}
i i
N P
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The 6-by-6 matrix éji‘is known as the transitiori matrix. It follows from
(F-35) that

* %k .
- 6x,=0C,. C.. . ‘ -
| _J_C_J ji C1J 653 (F-37)
. * ok %* '

' *
where 16 is the 6-by-6 identity matrix. Then,

% % % % * X % * ok .
it Mij+Nji 13‘13'Sji Nij+Tji Tij (F-39)
% * * % %* % %* K ok

M..N..+N.. T..=0,=8.. M,.. + T.. S.. (F-40)

F.5 Matrix Differential Equations
The position of a point P with respect to the origin of a rotatvin‘g '

coordinate system may be represented by the vector r, the components
of r in the rotating system being rl',, Ty, and ré. The angular velocity
of the system with respect to inertial space is w, with components Wy
Wy and wg. ‘ _ _

The velocity of P in a non-rotating coordinate system is related
to its velocity in the rotating system by the equation

dr dr
v = (T)NR = (?T—)R +tw X r (F-41)

where the subscripts NR and R refer, respectively, to the non-rotating
and rotating coordinate systems. The matrix form of Eq. (F-41) is
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\V3, \r3+w1r2—m2r1/
. N
N
=ﬁ r, & +Wr
L T3 |
sk
where W is given by
- N
0 W w,
W= < waq 0 -wy >
-wz w, 0

The variation of v is

d r d r s\ %
= — . = __ +
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(F-43)

(F-44)

(F-45)

(F-486)



Since the angular velocity of the coordinate system is not affected by

variations in r,
5§ W = 63 (F-47)

From Eq. (F-9), the variation of the velocity of P in the rotating

system is
Gril k
oM., IN..
dGér; )l osp N -<e 4 S ax. (F-48)
N 2 ot 8% ~
i Jr
| ®Ti3 )

Equations (F-47) and (F-48) are substituted into (F-46), and the
resulting expression is equated to (F-20).

3 5k
JBMI K sk aNl £ sk
bv. = =X +W. M., J +W, N.. 6% .
—i L ati i 774 ot; iij =j
=< s, T.. > éx. (F-49)
1) 1] =]
b3 5%

In similar fashion ‘Sii may be written in terms of Si" Ti" and their
derivatives, and then equated to the right-hand side of (E-13).

b3 3K

6§_i= , a-ti +Wi Sij ——-J-a ti +Wi Tij sz
sk sk 13 X )
=G;ér; = G; (M Ny 8, (F-50)
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By equating coefficients of 6£j and also of 6Xj in (F'-49) and (F-50),

the following matrix differential equations are obtained:

J +w. M, =S, (F-51)

% b3
L +W.S..=G. M,. : (F-52)
i

; % %
—3 +W.N..=T.. (F-53)

a’f‘l sk b sk b )
— + W, T.. =G, N.. (F-54)

Matrix differential equations may also be obtained for the 3-by-6
E3 3k
matrices Fi and Li' These are derived from Egs. (F-6), (F-17), and

(E-13).

d F" % % %
_ 1 - -
bv, '{—dt—i" + W, F%ég— L, ée (F-55)
d Ll %k sk koK
6§i = dti + Wi Li e= Gri Fi ée (F-56)

The differential equations corresponding to (F-51) through (F-54)

are )
’ d Fl b3 sk b
55— tW,F. =L ; (F-57)
i ' {
dL; % x x x
w— *W;L, =G F, (F-58)




ES
. Finally, it is of interest to relate the 6-by-3 matrices R; and
V; to each other. This may be done by taking the time derivative of
Eq. (F-1) with respect to the rotating coordinate system and equating

the result to Og the six-component zero vector.

b3 d _

The derivatives of the variation vectors with respect to the

rotating system are

-(%_— (6£i) =6V, - Wi 6£i (F-60)
i

d _ N
T, vy =2 - Wi oy

= G, ér, - Wi v 5 (F-61)

(F-60) and (F-61) are substituted into (F-59),

. * * * 3k
1
d \']1 sk b s
+<9—3r~ -V, W, + Rjpév, = Og (F-62)
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The coupled matrix differential equations are obtained from the
coefficients of 6r; and év in (F-62).

dﬁi %k % %
—aT - Rl Wl = - Vl Gl (F'63)
%
aVv, x x *
dti - Vi Wi = - Rl (F-64)
Equations (F-63) and (F-64) may be used to get relations in-
3% * %* *
volving the first partial derivatives of Mij’ Nij’ Sij’ and Tij with re--
spect to tj‘
oM d B
3 % s X p% % * %
——1 = F, =F.<R. W. - V. G, (F-65)
ot; i t. il ] i
J J
* *
oN.. 3k dV. 3 sk sk sk
U-p _ L =F<{V.W. -R, (F-66)
ot. i dt. iY'] 3 j
] J
ag % d f{ sk sk sk k%
=1, —1=L<{R.W.-V.G, (F-67)
ot, i dt. S O T J ]
) J
T av |
‘e S . d £ £ *
1 - 4= - -
Ir Li dtj Li{vj Wj Rj (F-68)
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These four equatlons may be written as matrix differential

b3
equations in M N.., S.., and T
iy’ 71yt v

ij°
aﬂl % sk 3 3
0 W= -1 -
5 tj Mij Wj Nij Gj (F-69)
ON.. s
N O_N..W.=-M.. (F-170)
atj ij j ij
38
i %k % * %
4 & w.--T.C. (F-71)
atj ij 7j ij 7j
sk
oT.. . o
§ . W -=-5. (F-172)
ot ij ) ij

F.6 Numerical Integration

The variant equations of motion are represented by (E-13). The
solution of these equations for ér as a function of time is represented
by (F-9). The problem now is to evaluate the elements of M ij and N

No direct analytical solution of (E-13) has yet been devised for
the case when there are disturbing forces which affect the motion of
the vehicle, However, the elements of M and NJ may be found by
numerical 1ntegrat10n of the coupled equatlons (F-51) through (F-54).

Since M. ij’ leJ S1J T ij are all 3-by-3 matrices, each of the four
matrix differential equations represents nine first-order linear differ-

b4 b3
ential equations. The elements of the 3-by-3 matrices Wi and Gi are

ij°
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known functions of the characteristics of the reference trajectory.

Equations (F-51) and (F-52) are coupled equations in the elements
of M i and S They can be mtegrated numerlcally if initial values
are known for the elements of M., i and S ij° Fortunately, such initial
values are available from (F-13) and (F-27).

M.. = S..
i 3 iy 73

k5

b=t 3
i
O )

(F-73)

x

Similarly, (F-53) and (F-54) are coupled equations in Nij and 'qi‘ij
which can be integrated numerically since the initial values are given

by

O
n
—

itrjj =0, Tjj 3 (F-74)
The integrations are carried out at a fixed value of tj. The independent
variable is t;.

The computation can be simplified if a non-rotating coordinate
system is used, for in that case the matrix W1 vanishes, The accuracy
of the computation is improved if the z-axis of the coordinate system
is perpendicular to the plane of the motion that would occur if there
were no disturbing forces; i.e., if the coordinate system is one of the
reference trajectory systems described in Appendix A. With this
choice of coordinates, the motion in the z direction is relatively loosely
coupled (through the disturbing forces) to the motion in the plane per-
pendicular to the z-axis, and consequently four of the nine elements in
each of the 3-by-3 matrices are close to zero.. This fact causes a
considerable reduction in the magnitude of the round-off errors.

sk

As a result of the numerical integration, the matrices M, ., i’ NIJ
SlJ, and TJ are found as a function of t for a fixed value of t, and a
known reference trajectory. Then, 631 and ézi are known in terms of
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the six constants that constltute 6x ..

Matrices KJ and JJ may be evaluated by the use of Eqgs. (F- 34)
and (F-33), respectively. .

The eighteen-element matrices f{., %}j’ %i, and i’i cannot be
evaluated, but they are not needed to solve the guidance problem.
These matrices have been introduced because they illustrate the fact
that each of the nine-element matrices may be regarded as the pro-
duct of two matrices, one of which is a function of ti only and the
second of which is a function of only tj' Moreover, it will be shown
in Appendix K that the eighteen-element matrices are useful in de-
riving an analytic solution of the guidance problem when the refer-

ence trajectory is an ellipse.

F.7 Matrix Symmetry

In this section the following relations among the matrices are

proved:
'f*ji ﬁijT (F-175)
?qJ.i - -N. JT (F-176)
*ji = EJT (F-77)
}(ij g*fijT (F-178)
1?31 = - ﬁijT (F-79)
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The superscript T s1gn1f1es the transpose of a matrix. The proofs
utilize the face that G is known to be a symmetric matrix and W is known
to be skew-symmetric.

The first proof will be that of (F-78), which states that the J ij
matrix is symmetric. This fact was first noted by Battln From
Eqgs. (F-33) and (F-34),

2z *

Mji i =Ky =Ny (F-80)
Equation (F-80) is dlfferentlated w1th respect to t,, with sub-

stitutions for the derivatives of M] and NJ being made from (F-69)

and (F-70).

* ]
* aJij N * N ok * \
Mji ati (M] - Nji Gi)Jij = - Nji Wi + Mji (F-81
s
(F-81) is pre-multiplied by Mji .
27,
s ¥ 1k ok _1 % %k _1 ok _1x% *
8 v5 e T vw 5 -5 w, =T (F-82)
ot. ij i71ij i71j ij i 3

Since the left-hand side of (F-82) is equal to the identity matrix,
which is symmetric, it must be equal to its own transpose. When
(F 82) is equated to its transpose and G T and W T are replaced by
G and - W respectively, the result is

%
-1
0d.. * % % _q %k ok _1 %k _q1 %
4 43l tew 33w,
ati ij i%1ij i%ij ij i
8] = T T T T
s ko sk * b4 ko ko E3
- —H 43V ert swrtb ol w (F-83)
8ti ij i71ij i71ij ij i ,

* Page 697 of Reference (5)
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It is apparent that this equation can be satisfied if J ij -1 is a symmetric

matrix. It must now be proved that J ij -1 is necessarily symmetric,
Equation (F-82) consists of nine first-order differential equations,

each of which has one constant of integration, If it can be shown that

these constants are such that jij -1 is symmetric at some particular

time, then the matrix must be symmetric for all values of time.

When 1:i = tj’

3 (F-84)

The zero matrix is symmetric. Consequently, Ji.-1 is symmetric
when 1:i = tj and hence for all values of time, The inverse of a non-
singular symmetric matrix is itself symmetric. Therefore, the
inafi‘ix ﬁij is symmetric for all combinations of ti and tj for which
Jij is non-singular, and Eq. (F-78) has been proved.

The second relation that will be derived is (F-76). Again the
proof is a consequence of the symmetry of a matrlx differential equa-
tion, Equation (F-53) is pre~multiplied by - NJ Subscripts i and j
are interchanged in (F-70), and the resulting equation is post-multi-

sk
plied by Nij' These two equations are then added.

aN,. 3N, -

-,L J Jl ) sk K sk ) sk )
Nji ati + ati NlJ 2NJ W. NJ NjiTij jiNij (F-85)

From Eq. (F-40) it is seen that the right-hand side of (F'-85) is

equal to the zero matrix,

aﬁ-i 0 0 a&i. k% sk
& N.-N. 2 =2N..W. N, (F-86)
ati ij ji ot ji i)
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Since Wi is skew-symmetric, the transpose of Eq. (F'-86) is

* T
IN..T
-—p— N

——L—i

* *
It is clear that both (F-86) and (F-87) can be satisfied if Nji =N,
The argument to be presented here is essentially the same as the

Both (F-86) and (F-87) con-

%
one used in proving the symmetry of Jij'

&
sist of first-order differential equations; therefore, if N.i

* 5 * %
Ten T - onTw N, T
ji ij ati ij 17751

(F-87)

T

at some particular time, the equality will be maintained for all values

of time.
When t, = tj’

o

From (F-53),

From (F-70),

ik * 3 sk
= N..=O T..
3 3] 3 ij
ai:]’ sk sk E3 ¥
i =-W.N..+T..=1
ot |4 -t AR A I § R
i 7
5k
8Ni sk sk E3 >k
5T = N.. -M, = -1
i t1=tj i I 3
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* 3

Equatiun*(F-BS) shows that when t; = lj’ Nji =+ NijT’ since both
are equal to Og. Equations (F-89) and (F-90) are used to pick the

proper sign; because the diagonal elements of N i’ and hence of
N.. , are increasing with t;s while the diagonal elements of NJ

1)
are decreasing with ;s the negative sign is required."

it ij (F-91)

and (F~76) has been proved.
The proof of (F-79) follows directly from substituting (F-34)

into (F-91) and then inverting and transposing both sides of the equa-

tion,
b sk T Sk _1 Sk T—l
N..=-N..,” =K.. = - K.. (F-92)
n 1] 1] J
b3 sk
K, =-K_T (F-93)
n 1]

(F-178) and (F-79) are used to establish (F-75). The left-hand
part of Eq. (F- 40) is solved for T i’ and substitutions are made for

Mij’ Nji’ and N i from (F-33) and (F 34),

e
b3

Jl IJ 1J _]1

*
= M.. (F-94)
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* *
The proof that S.i = - SijT involves the same sequence of steps

as thgt uied in deriving (F-76). Equation (F-52) is pre-multiplied
-1

The subscripts in (F-71) are interchanged, and the
equation is then post-multiplied by éi-

1 Sij‘ The two resulting

equations are added.

\ te a é,, 08 & ok
> = _1 lJ > £ _1 X 3
B SJl i 7t SJl G W SiJ
2§
Jl & -1 3 } x % X -1 X
+ _571— Gy ij Sji W; G ij
sk %k sk sk
=~ S.. M.. - T..S.. (F-95)

The right-hand side of (F-95) is the negative of the right-hand side
of (F-40) and is therefore, equal to the zero matrix, (F-95) may

then be simplified as follows:

* *
0 Sji (>_k; 1E g é -1 0 Sij
0 t; i ij ji i 0 ts
I Kook Lq %

= Sji (Gi Wi+ Wi Gi ) Sij (F-96)

a T * T
2%y g mat 2
ti i n 1] 1 ti
_ E3 T sk _.1 b & sk __1 X T
= - Sij (Gi Wi + Wi Gi ) Sji (F-97)
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Equations (F-96) and (F-97) can both be satisfied if

S s..T | F
When t, = t,,
1]
® % T
S =0, =+8.. F-99
A I B ( )
To determine the proper 51gn in (F-98) it is necessary to examine
the derivatives of S ij and S i with respect to t when t = tJ From
(F-52),
K
0S.. | x % * % *
—1 = -W.S.. +G, M,, = G, (F-100)
61:1 t =t J ) J 1 J
1 3]
From (F-T1)
%
0S.. x % % sk s
— =S..W,-T..G.= -G (F-101)
ot; iy = 33 i ]
1]
Since G is symmetric
sk x
as.. | as,. T
—a-{J—l— = - —a—%J—— (F‘].OZ)
i t, = t, i jt. = t.
1] =1 ]
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It follows from (F-96), (F-97), (F-99), and (F-102) that

5k
. =-8,.T
ji ij

3¢

(F-103)

All five of the relations stated at the beginning of this section
have now been proved.

By the use of the first three relations, the 6-by-6 matrix éi'
may be inverted by inspection,

” \ g -
sk sk b T b3 T
ji N ij Ny
b3 -1 3
Tt =C..= < > = < > (F-104)
1] Ji g % * ¥
| tw it i M
~ 7 " Py

F.8 Method of Adjoints

Since the completion of the work reported in the last section, the

author hag been apprised of two additional methods of proving the in-
verse relationship of Eq. (F-104). These are included here to round
out the discussion of matrix formulations. The first method employs
adjoint functions, and the second involves the properties of symplectic
matrices. |

The adjoint method is suggested in the work of McLean, Schmidt,
and McGee(l3). The technique requires that Eq. (E-13), which con-
sists of three second-ordet equations, be re-cast as a set of six first-

order equations. This is accomplished as follows:

. ¥ %k
6x = = = Z6x (F-105)
bl . " " 2
6v G O3 6v

4
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where

%
Z = (F-1086)

The vector X, which is adjoint to 6x, is defined by the matrix
equation

=-zTx (F-107)

[+

The six-component vector X may be partitioned into two three-com-

ponent vectors 4 andv.

* >k sk i

Ll Oq -G* Ll
A = P IE SR G « (F-108)

v -13 O3 v

oy
Since G is a symmetric matrix,
| L=-Guv (F-109)
Also,

V=-u (F-110)

(F-109) and (F-110) can be combined into a single second-order vector
eduation.
*

v=Gv (F-111)

This equation has the same form as (E-13),
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As a consequence of (F-110), A may be written as

[_l_ it 4

b
"
u

(F-112)
v

I=

To show the relation between éx and A, pre-inultiply (F-105) by
&T, post-multiply the transpose of (F-107) by 6x, and add.

. 3 X
AT e +3T sx=2Tzox - 2T Zox =0 (F-113)
& aTsxzo0 (F-114)
T
6x = constant (F-115)

l A
t Like 6x, X must be a time-varying vector. By analogy with

(F-35) Z\_j; the value of \ at tj’ may be related to A

" :
(F-116)

| 2 =Dy )
From (F-115),
i;r 6x; = AT ex (F-117)
(F-35) apd (F-116) are substituted into (F-117).
A" BjiT éji sx; = )" bx, | (F-18)
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Since éxi is arbitrary and )ti is assumed not to be a zero vector,

T -4 R

sl
b

Dii" Ci=1lg

x ) X

c.l-p.T
ji ji

Equation (F-120) relates the 6-by-6 solution matrix of (F-35) to the

6-by-6 solution matrix of (F-116).

A new six-component vector l' is defined as follows:

v
!
_x_ =

v

.

l' is related to A by the skew-symmetric matrix P.

t x
A =P 2

where

P has some interesting properties,

*2_ sk
P —-13
% K
1_ET

76

sk

3

=

o *

(F-119)

(F-120)

(F-121)

(F-122)

(F-123)

(F-124)

(F-125)




Equation (F-107) can now be written in terms of lt°

. I B T k-1 ¢
A=Pi=-zTP (F-126)
This equation is pre-multiplied by P,
o1 ¥ o dkmok
A =PZ P (F-127)

When the matrix multiplication in (F-127) is carried out, it is found that

3 *T % *
PZ " P=12 (F-128)
soA =z (F-129)

The form of (F-129) is identical with that of (F-105). Therefore,
the solution for &' must be the same as that for §x except for a difference
in the six arbitrary constants. The constants for l’ are the components
of )_\l Then, by analogy with (F-35),

s
1 ~ 1

A;=Cydy (F-130)

From (F-116), (F-122), and (F-130),

' ¥ * % % ok
lj =P lj = Cji P li =P Dji )_Li (F-131)
For an arbitrary )_\i,
sk sk sk
cji P=P Dji (F-132)
% % L] kK k% ik_) F-133)
Dji-P Cjip_-chi (F-133

17




%*
- From (F-120), the inverse of C.i is

j
L . % X K
l.p.T-_pec,

T
Cji ji ji

*
P (F-134)

The matrix multiplication is carried out by use of the definitions given in
(F-36) and (F-123).

< N
% %k
T -N..T
x . ji ji o
C.. " = ﬁ > (F-135)
ji * * -
.s..T M. T
ji ji
\- ~

This equation is the equivalent of (F-104),

F.9 Symplectic Matrices
The author is indebted to Dr. James E, Potter, of the staff of the
M.I. T. Instrumentation Laboratory, who first pointed out to him that the

transition matrix is symplectic and that this fact can be exploited in
studying the. properties of the transition matrix, A mathematically
rigorous discussion of symplectic groups is presented in Chapter VI of
Weyl.(42) , |

A symplectic m:trix can be defined by analogy with an orthogonal

matrix, The matrix A is orthogonal if

%*

¥k %k -
TiA-1 - (F-136)

&
A
3

*
I being the familiar identity matrix, The matrix Y is symplectic if

T

* % '
ATPA-P (F-137)

&’
where P is given by (F-123),
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*
It will now be shown that CJ is symplectic. The time derivative

of the scalar quantity 6xT Péx is

S 6x Pox)=6% Pox+ox Pox

5k T % %
Z " Péx+éx" P Zdéx

e ale
b 4

T sk sk
(Z* P+ P Z)bx ~ (F-138)

Ste )
4 # >|

From the definitions of Z and P and the fact that G is symmetric,

it can be shown that (2T P+P 2) is equal to the 6-by-6 zero matrix. Then,

d T X _
5 6x"Pox =0 (F-139)
6§jT P 6§j = 63c_iT P 651 = constant (F-140)

k% T *
P C.. 6xi = 6xi P 6§i (F-141)

P c =P (F-142)

and hence éJ is a symplectlc matrix.

To find CJ , (F-142) is pre-multiplied by P and post-multiplied
1

by C.. L.
Y S

--pC.Tp (F-143)
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Equation (F-143) is the same as (F- 134) Thus, the triple matrix product
of (F-143) leads to the expression for CJ g1ven by (F-135).

Equation (F-142) may be used to evaluate the determinant of C:|
Since the determinant of a matrix is equal to the determinant of its tran-
spose,

b3 sk b 3
(det Cji) (det P) (det Cji) = det P (F-144)

*
From the definition of P in (F-123),

sk

det P = +1 (F-145)
Then,
(det Eji)?‘ -1 (F-146)
sk
det C;; = +1 (F-147)

sk 3k

b3
Since Cii = 16 and the elements of C.i are continuous functions of time,
the plus sign is required in (F-147).

det éJ +1 (F-148)

This equation is useful in checking the numerical evaluation of the

elements of éji'
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APPENDIX G
INTEGRATION OF THE VARIANT EQUATIONS OF MOTION
FOR ELLIPTICAL REFERENCE TRAJECTORIES

G.1 Summary

The variant equations of motion are developed for the two-body
problem. The system consists of three second-order linear differ-
ential equations with variable coefficients. By choosing as a set of
coordinate axes one of the reference trajectory sets of Appendix A,
the sixth-order system is sub-divided into two uncoupled systems,
one of fourth order and the other of second order. The two uncoupled

systems are integrated directly to yield position variation relative to
the reference trajectory.

G.2 Variant Equations for Two-Body Motion

The variant equations for many-body motion are developed in
Appendix E. The matrix equations in the three reference trajectory
coordinate systems are (E-11), (E-18), and (E-19). For two-body
motion the equations are considerably simplified by the removal of
all effects of disturbing forces.

Just as the r s z coordinate system was used to integrate the
general equations of two-body motion in Appendix B, so it has been
found that the same coordinate system is most effective in integrating
the variant equations of two-body motion. When the disturbing forces

are neglected in Eq. (E-18), z is equal to zero, and p may be replaced
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by r. Then the variant equations become

[6r - £ 6r - 2f 65 - { 6s 2 0 0 o1
. . .0 oe . . 6 -
2f 6r+1 6r+ 65 - £2 68 -Elo a1 o s | (G-D
r .

6z 0 0 -1 6z

This equation can be simplified by expressing 6s and its derivatives in
terms of 6f and its derivatives. '

6s = r 6f ‘ (G-2)
66 = r 6f + r 6f (G-3)
65 =1 6f + 21 6f + 1 6f (G-4)

These. three equations are substituted into the left-hand side of (G-1).

5p - f2 60 - 21 f6f-(2rf +rf)6f

2.f6£-+.1: 6r+r6'f'+2r.-6f+(.r.—ri‘2)6f

6z
2 0 0 or
(G-5)
ol
r3 0 -1 .0 bs
0 0 -1 o0z

82




The equations of (B-32) are substituted into (G-5).

2

5i“.;i‘6r—2ri’6i‘ | 2 6r
2f6r+f 6r+r 6f + 2 r 6f =] o | (G-6)
r
6z ' - 6z

It is immediately apparent from (G-6) that the variant motion in
the reference trajectory plane and the variant motion perpendicular to
that plane are completely independent of each other. Therefore, the
two types of motion will be studied separately.

G.3 Three Solutions for Motion in Reference Trajectory Plane

The motion in the reference trajectory plane will be investigated
first. This motion involves the first two equations of (G-6). The two
equations are coupled equations in the variables ér and 6f. They may
be re-written as follows: ‘

(Dz-i’z-%)ér-Zri’Dﬁf=0 (G-17)
r
(2fD+£f)6r+ (@ D+2r)D6f=0 (G-8)

where the operator D is equal to % .
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These two equations constitute a fourth-order system in the vari-
ables 6r and 6f. Since &f itself does not appear in either equation, the
system may be regarded as third-order in the variables 6r and D 6f.

The fact that 6f does not appear in either equation indicates that
6r is dependent on only the derivatives of 6f, not on &f itself. One solu-
tion of the coupled equations is then

ér = 0 of = k (G-9)

where kl is an arbitrary constant.

The solution of the third-order system of (G-7) and (G-8) is ex-
pedited if the 1ndependent variable is changed from t to f. The symbol
F is used to represent a}.- The followmg substitutions may be made:

D=fF (G-10)
2 » .
D°=fF (fF) (G-11)
From (B-58),
F'f=-2nesinf(1372ecosf)
(1 - e?)

__2esinf ¢ ~12

1+ecosf (G-1 )
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(G-12) is substituted into (G-11).

p2 -2 (p?. 2esint

From (B-39), (B-60), and (B-61),

°2

B 2 S " T¥ecosT (G-14)

The' coefficient of 6f in (G-17) is

2a(l-e?) 2

-2rfD-=- Tfecost

F (G-15)

Equations (G-13), (G-14), and (G-15) are incorporated into (G-17),
and the resulting equation is multiplied by

(1 + e cos )
°2

f

[(1+ecosf)F2-(2 esinf) F - (3+ecosf)] ér

-2a(l-e3F6f=0 (G-16)
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The coefficient of 6. r in ((:-8) is

2

2fD+f) =212 (F- —<sinf , (G-17)
1+ ecosf
With the aid of (B-65) and (B-66), the coefficient of &f in
(G-8) may be written as follows:
rD2+2rD=ril(F2- 288Inf py L artE

1l +ecosft

L a2 L2 A e sinf ;

-rfF+2f(r T ¥ecost f) F

- r 2 F2 (G-18)

(G-17%) and (G-18) are substituteq into (G-8), and this equation, like
(G-2) is multiplied by '

(1 + e cosf)
£2

2 st=0

(G-19)

2[(1+ecosf)F—esinf] 6P+a(1-e2)F

The variable of may be eliminated from the coupled equations
(G-16) and (G-19) by pre-multiplying the former by the operator F,
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multiplying the latter by 2, and then adding.
{(1+ e cosf) F3 - (3 e sin ) F2
+(l+ecosf) F-(3esinf)]ér=20 | (G-20)
The terms of (G-20) may be re- groﬁped as follows:
((1+ecos ) F - (3esin ] (FZ+ 1) 6r =0 (G-21)
Two solutions of (G-16) are obtained from
CFZ+1) sr =0 (G-22)
‘These solutions are obviously
af =k, cos f (G-23)
6r = k, sin f (G-24)

The solution of (G-23) is Substituted into (G-16) in order to
solve for F 6f.

kg

a(l-e

2

F 6f = - [2 cos £+ e (cos? f - sin® f)] (G-25)

%)
Then &6f is obtained by integration.
k

6f = - _LT (2 + e cos f) sin £ (G-26)
a(l-e”)

The solution of (G-24) is handled in similar fashion,
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Fofe-— 23 _(1+ecosfsinf (G-27)
a(l-e") :
kg
of = m (2 + e cos f) cos f | (G'28)

G.4 Fourth Solution for Motion in Reference Trajectory Plane
The first three solutions of Eqs, (G-7) and (G-8) were obtained
relatively easily. The fourth solution requires considerably more

mathematical manipulation, ,

- One technique for obtaining the fourth solution is to substitute
the two known solutions, (G-23) and (G-24), successively into (G-20)
and by so doing to reduce (G-20) from a third-order equation to a
first-order equation, which can be solved directly by the use of an
integrating factor., A method which might be considered mathematic-
ally more elegant is the method of variation of parameters. Both
methods are described in detail in the first chapter of Hildebrand(41)
The second method is used in the following analysis.

In Eq. (G-21), let

x = (F2 + 1) o (G-29)
Then (G-21) may be written as follows:

dx 3esinf _ ' _
qr " TFecost ¥ ° (G-30)
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The variables x and f are now separable.

dx 3esinf

—_— e df =0 (G-31)
X l1+ecosf

This equation may be integrated directly. The result of the integration is

log x + 3log (1 + e cos f) = log C (G-32)

where C is an arbitrary constant. Then,

x=(F2+1)6r= C'T
(1 + e cos f)

(G-33)

: Since the two homogeneous solutions of (G-33) are known to be cos f
and sin f, the method of variation of parameters may be used to get the
particular solution of (G-33). In this method, the solution is assumed to

. be of the form.

ébr =ucosf+vsinf (G-34)

~where u and v are functions of f. The variables u and v must satisfy the

following two criteria:

U s+ ging=0 | (G- 35)
df df

du d(cosf) , dv d(sinf{)

daf daf df df
du . dv C
= —— gin £ + =% = (G-36)
ar cosf (1 +e cos f)3
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The two simultaneous equations (G-35) and (G-36) are solved for
du dv
Ir and I

du _ _ C sin f

= (G-317)
d (1 + e cos f)3
dv _ Ccos f _
_ (1 + e cos f)
Equation (G-37) may be integrated directly.
_ sinf df _C d( + e cosf)
u=- C % 3
(1 + e cos f) e (1 + e cosf)
- - < (G-39)

2e(1+ecosf)2

The integration of (G-38) is less obvious, It is desirable to
remove the polynomial in the denominator by making a change of
variable from the true anomaly f to the eccentric anomaly E, |

Equations (B-52), (B-54), and (B-64)are used in making the change,
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<
]

Cf cos f df
(1 + e cos 't‘)T

l)9

- C cosE -e | (1 -e cos E)’ . (1-e% 4dE
T-ecosE 2\3 T-ecos B
(1-e°) v
= ---—--5—-C (1-e cos E)(cos E-e)dE
(1-e2) 2

_i_sg./[-e-&(li-ez) cosE-ecos_zE]dE (G--iO)
2
(1-e°) - : -

The individual terms of (G-40) can now be integrated,

'v=—-£2-,-57-— [-eE + (1+e2)sinE-% (E + sin‘E cos E)]
_ 92
(1-e°)

= ;rce—z;ag{ -38E+[2(1+62)-e COSE] BinE} (G‘41)

No constants of integration have been added in (G-39) and (G-41)
because such constants, which would simply be multiplied by cos f
and sin f respectively, may be incorporated into the constants k2 and
kg of Eqs. (G-23) and (G-24).

In (G-41), the eccentric anomaly E may be written in terms of the
mean anomaly M and sin E by the use of Kepler's equation (B-55). Then
the terms in E may be converted back to functions of f by using
(B-53) and (B-54), |

91



o (1- 2)1/2 in f
- e - 8 :
V= 5 -3e [M+ T+¥ecos ! ]

2(1-e2)l2
}
2,72 .
2y _elcosf+e)y (1-e7) "sinf
t20%e? - 1+,ecos—F] T+ecost
- C __3eM +(2+ecosf)sinf] (G-42)

2 (1-¢e) (1_'32;3/2 (1+egos £)°

Equations (G-39) and (G-42) are substituted into (G-34) to
yield the fourth solution for é r.

- - - cos f - _ 3eMsinf
6r—C[ 2e (1+e cosf)2 25/2
2(1-e9)
+ (2+e cos f) sin2 f ]
2(1-e°)1 +e cos f)2
_ C _3eMgsinf 1 _ cosf ~
T -2 5 3]y *TFecost 2e ] (G-34)
2(1-e°)
The term
-——9-——2—— cos f
2e (1«e”) .

in Eq. (G-43) may be incorporated into the constant k, of Eq. (G-23),
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so that the fourth solutio_n becomes, finaily,

s _'3evMs'in‘t' 1 o _
ér = ky 2.3]g Y ITsecosT (G-48)
2(1-e°) _
where
ky = —So c | (G-48)
4 e - |

‘To determine the fourth solution for &§f from'(G-186), the first
and second derivatives.of (G-44) with respect to f must be found.
Thq derivgtive oiM with respe_t‘,t to f is obtained‘ frpm (B-56) and
(B"58). ’

. 3/
y 2,772
F(M)=-IY[_”= : (l'e ) 2 (G- 46)
f (1+ecosf)
The derivatives of (G-44) are
| 3
' 2.%2
F(ér) =k, e 3 ‘M cos f + 1-8). 81an
2 (1-32) 2 (1+e cos f)
+ e sinf Y
(1+e cosf)
=-k4[3eM°°;/f + e sin f - (G-47)
2(1-¢2) 2 2(+ecost
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3

3e (l-ez) /2 cos f

F2(6r) = - k

~-Msginf +
4 : 3/ 2
2 (1-e2) 2 : (1+ecosf)
+ e cos f "+ .ez sinzf

2(1 +e cos f)?_ (1 +e cos f)3

+
2)3/2 l+ecosf (1+e cos f)3

= k [3eMaint 1 | 1-e?
4 B -

2(1-e N

(G-48)

When (G-47) and (G-48) are substituted into (G-16), the resulting
expression for F ( 6f) is

3k

F (6f) = -1 (G-49)

4 [2e M(l+e cosf)sinf

p 3
2a(l1-e°) (1-02) 12

.Integré.tion by parts is used to solve for 6f from (G-49). Note that
: 3

dM = (1 -e cos E) dE = (a-e? d_fz (G-50)
(1+e cos f)
Therefore,
e M (1+e cos f) sin f df = - M (l+ecosf)d(l+e c.os f)
=-d[-é- M(1+e cost‘)2]+-12 (1+ecosf)?d M
=-d[ 5 M(+ecos ¥+ 3 (1-e3)"2 g (G-51)
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The integral of (G-49) is simply

3k4 9
of = - z M (1 +e cos f) (G-52)
2a (1—e2) 2

No constant of integration is needed in deriving 6f from F (6f)

because of the presence of the constant kl’ which is the first
solution of of,

G. 5 Solutions for Motion Normal to Reference Trajectory Plane

The differential equation for the motion normal to the reference
trajectory plane is the third equation of (G-6).

(D2+-“T) 6z = 0

(G-53)
r

To solve for 6z, the independent variable is changed from t
to the eccentric anomaly E. The symbol J is used for the operator
HgE' . The operator D2 in (G-53) can be expressed in terms of J and J2

D=EJ (G-54)
D’-BEJEN-E[EI2+ 4T ] (G-55)
From (B-57),
dE ne sin E e sin E .
= - T . ——  F (G“SS)
dE (l-ecosE)z 1-ecos E
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Then,

2 yord

D= (1 -e cos E)

[(1 -e cos E) J2 - (e sin E) J] (G-517)

From (B-49), (B-57), and (B-62),

| 2 3 - 2 ‘ o
T - E (G-58)

r3 ag(l -e cosE)3 (1 - e cos E)

(G-57) and (G-58) are substituted into (G-53), and the equation is
multiplied by

l1-e cos E
B2 '

[(l-ecosE)Jz—(e sinE)J+ 1] 6z =0 (G-59)

The terms in (G-59) may be re-arranged as follows:
[W2+1)-e(cosEJ+ sinE) J] 6z = 0 (G-60)
From the appearance of (G-60), two possible trial solutions for
6z are immediately suggested, namely, sin E and cos E, It is found
that sin E is indeed a solution, However, when 6z = cos E is tried,

the result is

[(32+ 1) -e(cos EJ + sin E) J] (cos E) = e (G-61)
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Since e is a constant and since the coefficient of the undifferentiated
term in (G-59) is unity, the second solution is (cos E - e).

The two solutions may be expressed in terms of the true anomaly
f by making use of (B-52), (B-53), and (B-54),

k

- ) . _ sin f _
6z = *——ZIE sin E = k5 m—f— (G 62)
(1-e7)
k6 cos f
6z = (l_-ez)— (cos E - e) = k6 TF¥e cosT (G-63)

G.6 Complete Solution for Position Variation

The results of this appendix may be summarized by tabulating
the complete solution for the position variation vector ér in the
r s z coordinate system. The component és, in the transverse

direction, is related to of by the equation

a (1~e2)

Trecost °f (G-64)

6s =r of =

From Sections (G. 3), (G, 4), and (G. 5), the complete solution

in terms of the variables f and M is

6r=kzcosf+k3 sin f

+k _3eMsmf+ 1

(G-65)
4 2(1—e2)3/2 1+ ecosf
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kla(l-ez) k2 (2+ e cos f) sin f

% = TTocos T - T+e cos T
k3 (2+ e cosf) cosf 3k4M(1-;e cos f)
+ - (G-66)
l1+ecost 9 3/2
2(1-€°)
k5 sin f k6 cos f
5z (G-67)

=1+ecosf t 1+ecosft

The variant motion in.the z direction is an undamped oscillation -
whose period is equal to the period of the reference trajectory.
The variant motion in the reference trajectory plane is more
easily analyzed if the equation for 6s is re-arranged as follows:
 Kat-ed 1 .
%8 "*T¥ecosT "k I+ gyooger) sinf

3k4M(1+e cos f)

3/2

2 (1"82) (G-68)

1
thy I+ teeoosT) cos -

In addition to an undamped oscillation whose period is equal to
that of the reference trajectory, the variant motion in the reference
traje'ctory plane contains an oscillation that is modulated by a ramp
function, Thus, the motion in the reference plane is dynamically
unstable; the amplitude of the variation in position increases steadily
as the number of periods is increased.

It should be pointed out that this analysis is based on linear per-
turbation theory; the conclusions drawn are applicable only as long

as the position variations from the reference trajectory are small,
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APPENDIX H

DETERMINATION OF VARIANT MOTION FROM
FIRST VARIATIONS OF ORBITAL ELEMENTS

H.1l Summary

First variations are taken of the six orbital elements that define
the motion along an elliptical reference trajectory. The motion along
the actual trajéctory is a function of these six variations and the known
characteristics of the reference trajectory. The basic analysis is
applicable to ellipses of low eccentricity (approximately circular) as
well as ellipses of moderate eccentr101ty, it is not applicable when e
is equal to unity.

. The general equations are applied to the particular case when e
is not very close to either zero or unity. It is shown that the resulting
equations for position variation are analogous to those developed in
Appendix G.

H. 2 Introduction

In the varianttwo-body problem, if the reference trajectory is
known to be an ellipse of moderate eccentricity, and if there are no
disturbing forces, then the actual trajectory, which is assumed to
differ only slightly from the reference trajectory, must also be an
ellipse of moderate eccentricity. One method of attacking the variant
problem is to assume small variations in each of the six known or- '
bital elements of the reference trajectory and to determine the effect
of these variations on position as a function of time. It is convenient
to use, instead of position on the actual trajectory, the difference be-
tween position on the actual trajectory at time t and position on the
reference trajectory at the same time. This difference, in vector
form, is ér.

This approach to the problem is primarily geometric; it depends
on the a priori assumption that the variant trajectory is an ellipse.
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In contrast, the approach of Appendix G is analytic; it requires no
such assumption. Indeed, the solution of Appendix G, with its secular
term, hardly resembles any of the more familiar forms of the equations

of elliptical motion.

H.3 Effect of Variation in Euler Angles

The x y z coordinate system, as defined in Appendix A, is re-
lated to the vehicle's reference trajectory plane. A new coordinate
system, designated x' y' z', will now be introduced, with the axes of
the new system bearing the same relationship to the actual trajectory
that the axes of x y z bear to the reference trajectory. The origin df
the new system is at the center of the sun. The x' - y' plane is the plane
of the actual two-body trajectory. The positive x'-axis lies in the
direction of perihelion from the sun. The positive y'-axis is 90° ahead
of the positive x'-axis in the direction of vehicle motion. The positive
z'-axis is parallel to the angular momentum vector of the actual tra-
jectory. The x' y' z' coordinate system, like the x y z system, is a

non-rotating coordinate system.

The Euler angles defining the orientation of the x' y' z' system
relative to the 'x y z system are 6§, 6i, and 6w, as shown in Fig. H. 1.
Each of the three angles is regarded as a variation from its reference
value, which is zero in each case. If the laﬁnch guidance were perfect,

the x' y' z' and x vy z systems would coincide.
y y y

The prime notation is used to designate characteristics of the
actual trajectory. Thus, r' is the position vector on the actual tra-

jectory, and f' is the true anomaly on the actual trajectory.

The vector r' can be resolved into its components along the r, s,
and z axes of the reference trajectory local ‘vertical coordinate
system. The symbols used for the components are r'r, r's, and r'z.
From Fig. H. 1,

r' =1 [cos (f' + dw) cos (f - 69)

+ sin (f' + 6§w) cos &1 sin (f - §Q)] (H-1)

100




4 ACTUAL
Si TRAJECTORY

X
F — focus at center of sun
FN — line of nodes
Fx,Fy,Fz — axes of reference trajectory stationary coordinate system
Fx',Fy',Fz' _— axes of actual trajectory stationary coordinate system

6n,6i,6w — orientation angles between two coordinate systems

r — position vector on reference trajectory at time t

r' _ position vector on actual trajectory at time t
f — true anomaly on reference trajectory at time t

f' _ true anomaly on actual trajectory at time t

Figure H.1 Orientation of Actual Trajectory Relative to Reference
Trajectory

101



r's = p [-cos (f' + dw) sin (f - 682)

+ sin (f' + 5w) cos 6i cos (f - 62)) (H-2)
r', = r' sin (f' + dw) sin 6i (H-3)

The components of position variation vector é6r along the r, s, "and
Z axes are

Sr = r"'r -r (H-_—4)
58 = r's {H-5)
6z = r'Z (H-6)

The fundamental assumption of linear perturbation theory is that all
variations from reference values be small. Thus, in Fig. H. 1, the
separafion of P' from P must be small, and, as a consequence, angle
51 must be small. It is also necessary that the difference betweeﬁ
(f' + 6w) and (f - 6§2) be small. This difference may be written as

(f' + 6w) -(f - 6Q)= 6+ 6¢ (H-17)

where
6f =ft - f (H"B)
50 = 8(w + Q) (H-9)

When the reference trajectory has appreciable eccentricity, it is
necessary that the major axis of the actual trajectory be situated close
to the major axis of the reference trajectory if P' is to be close to P for
all values of f. Then, §¢ must be small, and, since (&6f + 6¢) is always
small, 6§f must likewise be small. It should be noted that the individual
angles 6¢ and 6f need not be small if the reference trajectory is circular
or nearly circular, because for such trajectories a large displacement

of the x'-axis from the x-axis has no appreciable effect, per se, on the
distance of P' from P.
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When the usual small-angle assumptions are applied to 6i and
(8f + 6¢), the components of §r become

Sr =r' cos (6f+ &¢)-r=r"'-r (H-10)
6s=r' sin (6f+ 6¢)=r' (6f+ 6¢) (H-11)
6z = r' 81 sin (f' + Sw) (H-12)

In the last equation, (f' + §w) may be written as
f'+ 6w=(f+86f)+ (5¢ - 6Q)

=(f - 6Q)+ (s£+ 6¢) (H-13)

Since &r is a small quantity, linear theory permits the following
additional simplification of Eqs. (H-11) and (H-12).

6s =(r+ 86r)(8f+ 8¢)=1r (6f+ 5¢) (H-14)

6z =(r+ 6r) 6isin [(f - 6Q) + (6f + &§¢)]

r &i sin (f - 88) (H-15)

Equations (H-10), (H-14), and (H-15) show the effects of variations
in the Euler angles on the components of §r. The radial component &r
is unaffected. The transverse component §s varies linearly with 6¢.
The orthogonal component §z depends upon both §i and 6.

H.4 Variation in Eccentric Anomaly

As an intermediate step in the determination of 6r and 68, it is
useful to derive an expression for §E, the variation in the eccentric
anomaly, interms of variations in the orbital elements.

The discussion in the last section concerning the angle. (6f + §¢)
is applicable to both (6E + §¢) and (M + §¢); i.e., (6E + 5¢) and
(§ M + §¢) are small angles regardless of the eccentricity of the
reference ellipse; if the eccentricity of the reference ellipse is not
" near zero, 6E and 6§ M are individually small, but they need not be if
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the eccentricity is near zero. These considerations also apply to 6_M0,
the variation in the mean anomaly at epoch. To preserve generality,
the angles 6E, §M, and 6M0 will not be assumed to be small in the
initial development. Then

E'=E+8E=(E - 56¢) +(6E + 5¢) (H-16)
M' = (M- 6¢) +(6M+ 6¢) (H-17)
M, = (M- 89) + (6M+ 6¢) (H-18)

From Eqs. (B-47) and (B-55),
M=nt+M0=E-eSinE (H-19)
For the actual orbit, at time t,
' 1
M=(n+ 8én) t+ M, =E' - (e + 6e) sin E! (H-20)
(H-19) is subtracted from (H-20).

(6M + 69) =t6n+(6M0+ 6¢.)

=(6E+ 6¢) - (e + 6e) sinE'+ e sinE (H-21)

The variation 6§n may be expressed in terms of 6a by the use of
(B-62).

3
6p,=0=6(n2a')=2na3 §n+3n2a sa (H-22)
_ 3n
én = - — ba (H-23)
2a
Also,
sinE' = sin(E - 6§¢) + (6E + 6¢)_COS (E - 6¢) . (H-24)
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(H-23) and (H-24) are substituted into (H-21), second-order terms are
neglected, and the resulting equation is solved for (6E + & d).

3 Sa

-~ nt — +(8M, +8¢) +(e+ se) sin(E - 6¢) - e sinE
SE + 5¢ = —2 2
l1-ecos(E - &§¢)
(H-25)
H.5 General Equations for Components of Position Variation
Equation (B-49) is used to determine 6r.
r=a(l-ecosE) (H-26)

On the actual trajectory,

r'=(a+ 6a)[1-(e+ §e) cos E'

(a + 6a){1 -{e+ &8e) [cos(E - 6¢) - (6E + 6¢) sin (E - 6¢)]}

af[l-(e+ &e)cos(E - 6¢)+ e(8E + 6¢) sin(E - 6¢) ]

+[l-ecos(E- §¢)] 6a (H-27)

br=r'-r=a[ecosE - (e+ 6e) cos(E - §¢)

+e(6E+ 6¢) sin(E - 6¢)]+[1 - e cos(E - §¢)] sa (H-28)
From (H-14), the deviation in the transverse direction is

5s

r(8f+ 8¢) =r' (6£+ 6¢)

r' sin (fo- §¢) = r' sin [t - (f - 6¢)]

r' [sin f' cos (f - 6¢) - cos f' sin (f - 6¢)) (H-29)

1
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From (B-53),

[1-(e+ 6e)2] 1/2 sin E'

sin f' =
1-(e+ 6e) cos E!
-(2t8a) 1y e+ 5002 /2 [sin(E - 59) + (8E + 6¢) cos (E - 5¢)]
rl
(H-30)
From (B-54),
_cosE'-(e+ 6e)
cos f' =

1-(e+ 6e) cos E!

_{(a+3da) [cos(E - 6¢) - (6E + §¢) sin(E - 6§¢) - (e + de)]

rl

(H-31)

(H-30) and (H-31) are substituted into (H-29). When higher-order
terms are neglected, the expression for &s is

1/2

Gs=a{(1-e2-2e se) sin(E - 6§¢) cos (f - 6¢)

-[cos (E - 8¢) -(e+ 6e)]sin (fj §¢)

+ [(1 - 62)1/2 cos (E - 6§¢) cos (f - §¢)

+ sin(E - 6¢) sin (f - 6¢)] (6E + 6¢)} (H-32)

Equations (H-28) and (H-32) are the general equations for &6r and §s,
applicable over a wide range of eccentricities for ellipses, from e = 0
to e approaching unity as a limit. The equations are not applicable when
the reference ellipse is rectilinear (that is, when e is equal to one), for
in that case a positive variation in e causes the actual trajectory to be-
come hyperbolic, '

(H-28) and (H-32) are used in conjunction with (H-25) to express ér
and 6s in terms of variations in the elements a, e, MO’ and ¢. b6z is

independent of variations in these elements.
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H.6 Position Deviation for Trajectories of Moderate Eccentricity

Elliptical reference trajectories for which e is not very small
(close to zero) or very large (close to unity) may be referred to as
trajectories of ''moderate' eccentricity. Practical trajectories for
voyages to neighboring planets fall into this category. The general
equations of Sections H. 4 and H. 5 will be used to obtain simplified

expressions for &6r and 6 s when the eccentricity is moderate.

Whenever the eccentricity is appreciably greater than zero, if
the position variations are to remain small, 6§f, 6E, 6M, 6M,. and
6¢ must be small angles. Then Eq. (H-25) becomes

(6E + 86¢) (1 - e cosE - e 6¢ sin E)

'=_§_nt.6_€i+ 6M0+ 6¢ -e 6¢ cosE + sinE ée
2 a :
(H-33)
23 ey 8M, + sin E &e
6E = 2 a (H-34)

l1-ecosE
From (H-28), the equation for 6r is

or

i

a[-e sinE 6¢-cosE de+e sinE (SE + 6¢)]

+(1 - ecosE) 6a (H-35)

(H-34) is substituted into (H-35)

3 .
—naesinkE

Sr = a(l-ecosE)-2 t

l1-ecosE

o |8

,aesinE . a(cosE -e

0 be (H-36)

1-ecosE 1-ecosE
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With the use of the relations of Appendix B, (H-36) reduces to

) v
6r=(r~—3-vrt) ﬁl+—E &M

2 a n
The derivation for §s proceeds in a similar fashion from Eqs. (H-32)

and (H-34) and the standard forms of Appendix B. Note that

(1-e- 2 58)1/2 = [ (1-e? (1 _ 2e ae)]l/z

0o~ 2 cosf be (H~37)

1- e2
- (1- A2 —= — be (H-38)
(1-et/?
Then 6s is obtained as follows:
6s = a{[(l - ez)l/2 S S— 6e] (sinE - cosE 6¢) (cosf + sinf 5¢)

(1 - e2)t/2

-(cosE-e+sinE 6¢- 6e) (sinf - cosf 6¢)

+ [(1 - ez)ll2 cos E cos f + sin E sin f] (6E + 6¢)}
=‘a{{-—————9——— sin E cos f + sinf:l Se

(1 - eR1/2

2,1/2 , . .
+ [(1-¢") (sinE sinf - cos E cosf) + (cosE - e) cos f

sin E sin f] 6¢ + (1 - e2)1/2 (6E + 6¢)}

a[———s—lﬁ- §e+(l-ecoskE) &g +(1—e2)1/2 GE]

l+ecosf

.3 na(l-ez)l/z,

2 6a a(l-ez)ll2
l1-ecosE a 1-ecosE

+a(2+ecosf

) sinf 6e+a(l -ecosE)b¢
l+ecosf

v
-3yt %2, 8gm +(a+
9 B 0

) sinf 6e+r 6¢ (H-39)
a n

1-e2
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H.7 Relation between Solution of Appendix G and Solution of Appendix H

Since the component equations of Appendix G, specifically (G-65),

(G-866), and (G-67), are written in terms of the variables f and M,

Eqgs. (H-37), (H-39), and (H-15) of this appendix will be written in terms

of the same variables so that the two solutions can be compared.

From (H-37),

3 .
— naesinf
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2
51‘ = a(l - e ) - 2 t .6_8.
l+ecosf (1-e2 1/2 a
+5£—§—i£-— 6M0 ~acosf e
(1 - e2)1/2 .
ca(l-e? |-3Mesint 1 6a
2(1fe2)3/2 1+ecosf a
+———-91-e——sinf 5M +-§M §__a; -acosf e
1/2 0 0 |
(1 _ e2) / 2 a :
' ‘ (H-40)
. The expression [ § M, + 3/2 M, 5a/a] may be simplified.
§My = 6(-nt ) =-nbty-tyén
= -nst -3 My 2 (H-41)
2 a
&§M +3m Sa . _p st (H-42)
0", Mo 0 _
a
~ Finally,
6r=a(1-e2) _3M‘esmf + 1 ba
2(1'-e2)3/2 l+tecosf | a
D38€  sinfét,-a cosf Se (H-43)
2.1/2 0
(1 -¢e°



From (H-39),

§g=-3na(l+ecosf) | da tall+ecosf) (o
2 (1 - ¢H1/2 a  (1-eyl/?

0

2
+a 2+ecosf sinf6e+a(l-e) 56
l1+ecosft l+ecosf

=al(l- e? _3M(1+ e cosf) ba
2(1-e2)3/2 a
__nae <2+ecosf> cosf6t0
(1_e2)1/2 l1+ecosf
+ a 2_‘1'_6_(2?_2 sinf §e
l+ecosf
2 n ét
L all-e7) 5¢ - 0 (H-44)
q
1+eCOSf (1_e0)3/2
From (H-15),
a(l _e2)
§z="-"—=" §i(sinf cos 62 - cos f sin 6§2) (H-45)
l1+ecosf

When (H-43), (H-44), and (H-45) are compared with (G-65), (G-66),
and (G-67), respectively, it is evident that the two sets of equations are
identical if .

n 6t

ky = 6¢ ~— (H-46)
(1 - e2)3/2
ko= -abe (H-47)
Kk, = -~—™2R2€ ¢ (H-48)
PRV
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ba

k,=a(l-e?) 52 (H-49)
- a

k5 =a(l- e2) 6i cos 62 (H-50)

kg = - a(l-e? 6isin 60 (H-51)

Thus, despite the presence of the secular term, the motion des-
cribed by Eqs. (G-65), (G=66), and (G-617) is elliptical motion. The
secular term is simply a manifestation of the fact that the period of
the actual elliptical trajectory differs slightly from the period of the
reference trajectory.
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APPENDIX I
VARIATION IN POSITION, VELOCITY, AND ACCELERATION

I.1 Summary

The equations for position variation and velocity variation are
expressed in vector form and also in matrix form in the three re-
ference trajectory coordinate systems. An expression developed for
variation in acceleration serves as a check of the basic solution of
the variant equations of motion.

I.2 Vector Forms

It is evident from Fig. A.2 that components along the x, y axes
and p, q axes may be derived from the r, s components by means of

the following coordinate transformations:

& x cosf -sinf or

= (I-1)
oy sin £ cos { bs
ép cos vy -sin vy or

= (I-2)
6q sin vy cos vy bs

With the aid of these transformations and the relations of Sections
B.8 and B.9, Eqs. (H-15), (H-37), and (H-39) may be combined into a
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single vector equation,

&M
= 0 _3,06a ba
65“’(—3— 5‘?>Eq”—5‘2r

y -
+(:2-6e+r6¢>28 a5e_1_1X

+rsin (f - 6Q) Siu, (I-3)

The velocity deviation vector 6v is obtained by vector differ-
entiation of 6 r. The angular velocity of the p, q axes is g, the angular
velocity of the r, s axes is {, and the x, ¥, z axes are non-rotating.

6 M
6_v_=—vg.(—n-9---§-t6a)u

al -p
oM
0 3 ,° 6a
+ [V T‘—Z-(Vt'f'V)"é—]Eq

+[rein(f-6Q) +rfcos(f-60)]6iu (I-4)
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The terms in (I-4) may be simplified when the proper substitutions
are made for f, 'y f', and y from the relations of Appendix B.

o MO 3, 6a
The coefficient of(T_ "5 t ‘é“) in (I-4) is

'Vng+VEq=(apo+anq)=ar2r (I-5)

The additional terms involving —659— are

-3 ) : =—v -
?ng+r3rfrfgs qu (1-6)
. . be .
The coefficient of is
l-e2
-yfu tyu = - rfsinfEr+(rsinf+rfcosf)BS
= - v sin pr + v cos fgs (1-7)
The coefficient of o ¢ is
-rf_gr+r_gs=-v2p (1-8)
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The coefficient of 61i u, is

r sin (f 6Q)+rfcos(f-68)

v[sin ysin (f - 6Q) + cos y cos (f - 6§ Q)]

vcos (g~ 68) (1I-9)
With these substituions, Eq. (I-4) becomes

in
6v=-vl-21 set 5
v<1 ) e ¢>u

&M
-y 0 .3 %a
2 Ta Eq+ar< n 2 t8.)Br

+———5 6eu +vcos(g-6Q)6siu, (I-10)

I.3 Component Equations in Matrix Form

The corriponent equations for 6r and 6v in the three reference
trajectory coordinate systems are obtained from (I-3) and (I-10).
Equations (I-11), (I-12), and (I-13) relate position variation and
velocity variation in the reference trajectory plane to variations in
the elements a, MO’ e, and ¢. Equation (I-14) relates 6§z and 6vz
to variations in i and 2.
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6z y -X 6icos 6§

n

(I-14)

v v -v 6i sin 682
Z y X

I.4 Variation in Acceleration

The variation in acceleration may be obtained by vector differen-
tiation of (I-10), and the result can be used to check the solution obtained
for the matrix differential equation

*
6E_=G6£ (I-15)

The result of differentiating (I-10) is

§
1l

6 _ofsinf o L ss)-Vvicosf o . vg ba
v(l-ez © ¢' 1-e? T2 Ep

/6 M v cosf-v i'sinf
+ |a_ f 0—3 téa + S i 6e| u
r 2 . 1- e2 =s

+ [vcos (g- 6Q) - vg sin (g - 6Q)] 8iu, (I-16)

118




The coefficient of 6 ¢ in (I-16) is

- + = - -
(vup vgu) (aql-lp apuq)

=—ar(sin7_1}p-cosy_l_1)=a u_ (I-17)

The coefficient of % 3;‘- is

a” "% %qfq T Y (-18)

§My 5
The coefficient of (_. -2 _.E.) is
n 2 a

° L] =M . _ -
ar3r+arf-l5s F(ngr rf_t_1$)

=P - -
3 (2 v.u, ‘VS _1_18) (I-19)

The complete coefficient of %?‘-,. is

3 ,- 3 :
q-—z (art+ar)_1_1r--§a ftu

u-vu
. 2 — r- - =s

ﬁ-(Zvu - v u)-

1
STy ar e -3

mloo

e _ 3
;—5 [@r 3v t)u +2vst3s]

"

(I-20)
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One of the terms in the coefficient of 6 e contains the derivative
v_. A substitution may be made for ‘;s by utilizing the fact that the

angular momentum of the reference trajectory is constant.

h=r’f=rv, (I-21)
h=rvs+rvs=0 (1-22)
L Ev,
vs=—T=—vrf (I-23)
The complete coefficient of ° 5 1is
1-e
(-vsmf—vfcosf)gp -vgsinf_gq—vsfcosfx_lr
+(vscosf-vsfsinf)_gs
=a_sinfu -vi‘cosfu -V i‘cosfu
r =5 =p s =r
- f (vr cos f + v sin f) ug (I-24)
The product A i‘may be expanded as follows:
. 2 .2 2
st=rf2=£"§.-=_l:l__*‘._3.=g_,§_(l_._g.l ‘ (I-25)
r For rs
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With the aid of (I-25), the coefficient of becomes

1-e
-ZVSfcosf3r+(ar-vsf)sinf_1_1$
= -Za(l-ez)cosfu +[- -a(l-ez)sinf]u (I-26)
;‘3 -r y =s

The coefficient of 61 u, in (I-16) is

\.rcos(g-GQ)—vg.sin(g-SQ)

n

a, [sin v cos (g - 68 + cos v sin (g - 68) ]

a . sin (f - %) . (1-27)

The relations for the terms comprising 6a, as expressed in
Equations (I-17) through (I-27), contain components only in the r, .

s, and z directions. On the basis of these relations a matrix equation
can now be written for 6 a in terms of the variations in the orbital
elements.
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When Eq. (I-28) is compared with Eqs. (I-12) and (I-14), it may
be seen that

8
Sa 2 0 0 r
sa o B 0 -1 0 &s (I-29)
S 3
r
6az 0 0 -1 6z

The 3-by-3 diagonal matrix on the right-hand side of (I-29) is
identical with the matrix on the right-hand side of (G-1). This is the
é matrix in the r s z coordinate system. Thus the solution for ér
given by (I-3) has been checked.

123




APPENDIX J
LOW-ECCENTRICITY REFERENCE TRAJECTORIES

J.l1 Summary

- Equations are developed for position variation and velocity variation
in low-eccentricity reference orbits. The differential equation solution
of Appendix G is shown to be applicable to low-eccentricity orbits as well

as orbits of moderate eccentricity.

J. 2 Introduction

- Although low-eccentricity trajectories cannot be used as transfer
orbits on interplanetary voyages, the variant equations for such trajec-
Vtorie_s are derived in this appendix in order to illustrate the applicability
of the general equations developed in Sections H. 4 and H. 5. The results
obtained are of value in preliminary qualitative studies of the motion of

satellites in circular or near-circular orbits,

J.3 Position Variation and Velocity Variation

In.order to distinguish the results of this appendix from those of
previous appendices, the subscript o will be added to all designations for
orbital eieinents.

- The distinctive feature of the reference orbits now being considered
is that the eccentricity e is of the same order of magnitude as the orbital
element variations. This characteristic is used in deriving expressions
for 6r and 6s from Eqs. (H-25), (H-28), and (H-32.)
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For low-eccentricity orbits,

l-e cos(E-6¢o) =1

r=a
(o)

21/2
(1- eo) sin f
sin E = = sinf
1-*-,eo cos f

cosf+e

o .
coSsE= — —~ =z cosf+e
1+eocosf o

Yo
n_a_ 1+ e, cos E)
v = =n a

1 o o
(1—eo cos E)/2 '

n e sinf
o % %o

r 1 fo)
(1-ej)/2

n,ag (1+e0 cos.f) i
s /5 o %o
(1-e02)/

as

(e, + ée ) sin (E - 6¢,) = (e + be )(sin f cos 8¢, - cos f sin 6¢ )
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. In Eq. (H-25) the term (eo+ 6eo) sin (E - 6¢o) may be expanded

(J-1)

(J-2)

(J-3)

(J-4)

(J-5)

(J-6)

(J-7)

(J-8)



The angle (8E+ 6¢ ), which must be small, is

SE+6¢ = -on {2 +(6M__ + 8¢ )
o 270 ao 00 o

- sin f I:eo- (eo+ 6eo) cos 6¢o] - cos f (eo+ 6eo) sin 8¢

(J-9)
In Eq. (H-28), the term e, (6E + éq)o) is of second order in the
small quantities. Therefore, the expression for 6r is simply,
6ao

br = a —a-o— +cos f I:eo- (e0+ be ) cos 6¢0]
s . J-10
sin f (e + be ) sin 8¢ ( )

From Eq. (H-32),
bs = a [sin (E -f) + (eo+ be ) sin (f - 6¢ )

+(8E + 6¢0) cos (E - f)] (J-11)
sin(E -f) =sinE cosf - sinf cos E = - e, gin f (J-12)
cos (E -f) = cosE cosf+sinE sinf = l+e cosf=1 (J-13)
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Equations (J-9), (J-12), and (J-13) are substituted into (J-11).

58 = 230 20, (oM +6¢)
8 =8, 7% a8, 00 ()
-2ginf [eo-(eo+ 6eo) cos 6¢o]

-2cos f (e + e )sin 6¢0} ' o (J -14)

From Eq. (H-15),

6z = a_ 6i  sin (- 690) ' (J -15)

The.velocity deviation components are obtained by differentiating
the components of 6r, with consideration being given to the fact that
the coordinate system is rotating with angular velocity f.

v

f= —:' =n, (J-16)

3 Sa, '
VTV T Rt a, - (M, *+ 6¢,)

+ gin f [eo- (e, + be ) cos 6¢°)]

+cos f (e + be ) sin 6¢°} (J-17)

bv_=v -la—a-g-cosf - ;6 ) 8
8 % "a o8, 0e,) cos ¢o

+sin f (e, * be ) sin 6¢0} (J-18)
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6v, = v bi  cos (f - 690) (J-19)

The position and velocity deviations may be written in matrix form
as shown in Eq. (J-20).

J.4 Variation in Acceleration: .
As in Appendix I, the variation in acceleration may be used to check

‘the solution of the variant problem. The matrix for 6a is obtained by
" differentiating the lower half of (J-20), Equations (J-21) and (J-22) in-
dicate that the solution checks satisfactorily.

| J.5 Comparison with Differential Equation Solution of Appendix G
‘When the eccentricity is small, the differential equation solution
given by Egs. (G-65), (G-66), and (G-67) reduces to the following:

6r'=" k2 cos f + k3 ginf + k4 | ‘ (J-23)
= - ) A - 3 ’ o -
68 =k, a -2k,sinf+2kycosf 3 kg M (J-24)
6z = k5 sinf + k6 cos f (J-25)

A comparison of Eqs. (J-23), (J-24), and (J-25) with the first three
equations of (J-20) indicates that the two sets are identical if

ky = ~6.¢° -n, &t \ (J-28)
ky, =8, e (e ¢+ se.) cos‘ 6% ] (J-27)
ks;- -a, (eo+.6eo) sin 6¢ (J-28)
ky = ba_ . o | (J-29)
kg=a  6i; c"os 690 - (J-30)
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k6 = - ao 510 sin 6{20 (J-31)

Thus, the differential equation solution is applicable to low-eccentricity
 reference orbits as well as reference orbits of moderate eccentricity.
The distinction between the two types of reference orbits reduces simply
to a difference in the physical interpretation of the six constarits of inte-
gration,
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APPENDIX K
MATRICES FOR ELLIPTICAL TRAJECTORIES

K.l Summary

For the case when the reference trajectory is an ellipse, analytic
expressions are developed for the elements of the matrices defined in
Appendix F. The eccentric anomaly E is the independent variable. The

reference trajectory flight path coordinate system is used.

K. 2 Selection of a Coordinate System

The matrices associated with the problem of small departures from
a known reference trajectory are defined in Appendix F. In Appendices G,
H, and I, the variational problem is solved analytically for the case when
the reference trajectory is an ellipse of moderate eccentricity.. The
solution is an expression for position variation and velocity variation in
terms of the variations in the orbital elements and the characteristics of
the reference trajectory. From this basic solution analytic expressions
can be derived for all the matrices of Appendix F.

The algebraic and trigonometric manipulations required are straight-
forward but quite formidable in length and in number. Therefore, the
choice of coordinate system, of independent variable, and of a group of
six orbital elements should be carefully considered from the standpoint of
reducing as much as possible the amount of mathematical drudgery.

The reference trajectory coordinate systems have the obvious ad-
vantage of uncoupling the z-axis variant motion from the variant motion in the
reference trajectory plane, The consequence of this uncoupling is that
in each 3-by-3 matrix or sub-matrix of the group of matrices in Appendix
F, at least four: of the nine elements are zero.
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The problem now is to select one of the three reference trajectory
systems. Each of the three has an advantage not possessed by the other
two. The xyz system is non-rotating, and hence the matrix V*{/ in Appendix
F is the zero matrix. In the rsz system, boththe nominal position vector
and the nominal acceleration vector lie in the r direction, so that there is
no component of either vector in the s direction. The pqz system has the
advantage that the nominal velocity vector is in the q direction; hence,
there is no component of v inthe p direction.

The matrix formulations (I;ll), (1-12), and (I-13) may be used to
compare the three systems. The 4-by-4 matrix of the xyz systemhas no
zeros; the 4-by-4 matrix of the rs z system has two zeros, one due to the
fact that s = 0 and the other due to the fact that ag = 0; the pgqz system's
4-by-4 matrix has two zeros, both due to the fact that vp = 0. It is apparent
that both the rsz and pqz systems are preferable to the xyz system.

- The final choice between the rs z system and the pqz system is a

difficult one. Actually, a considerable amount of analysis was done in each
of the two systems before it became apparent that the matrix formulations

are simpler in the p q z system. The relative simplicity of the p q z sys-
‘tem is associated with the fact that in this system the secular term in posi-
tion variation is wholly along the q-axis.
It might be argued that thé rsz system has a similar property, in

that the secular term in velocity variation is wholly along the r-axis, and
‘therefore, analysis in the rsz system ought to be just as simple as analysis
in the pqz system. This argument is not valid because one of the useful
formulations in guidance theory involves expressing the variant path in
terms of the three components of position variation at two different times,
as illustrated by Eqs. (F-2), (F-8), and (F-19), and no such formulation

in terms of the three components of velocity variation at two different

times is required.
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K.3 Selection of an Independent Variable

The analysis is facilitated if all time-varying quantities are ex-
pressed in terms of one independent variable. Variables that might be
used include time itself and the three anomalies f, E, and M.

Inasmuch as t and M are linearly related, the choice of one or
the other of the two would appear to be equaliy desirable. Both have the
decided disadvantage that trigonometric functions of E and f can be ex-
pressed in terms of M (or t) only through Kepler's equation, (B-55),
which cannot be solved explicitly for E in terms of M.

On the other hand, the use of the true anomaly f as the independent
variable causes difficulty when the secular term in the solution of the
variant equations is expressed in terms of f.

By process of elimination, then, the eccentric anomaly is chosen
as the independent variable. Both trigonometric and secular terms can

be expressed directly in terms of E,

K. 4 Selection of a Grouping of Orbital Elements

The final selection problem is that of selecting a group of six in- .
dependent constants which characterize the variant path. As in the
case of choosing a coordinate system and an independent variable, the
criterion in making the selection is to reduce the amount of algebra to
manageable proportions.

The six constants serve as a bridge linking position and velocity
variation at one time to position and velocity variation at another time.
First, a 6-by-6 matrix is obtained which relates position and velocity
variation at time t. to the six constants; then the 6-by-6 matrix is inverted
so that the six constants can be expressed in terms of the position and
velocity variations at time t. Finally, the two 6-by-6 matrices, one in terms
of tJ and the other in terms of t are multiplied together to yield a single
6-by-6 matrix by means of whlch position and velocity variations at t,
may be expressed in terms of posutlon and velocity variations at t,. The
final matrix is the transition matrix CJ of Appendix F.
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The six constants may be conveniently expressed in terms of

variations of some combination of the six orbital elements. The group-

ing that has finally been chosen, written in vector form, is the following:

{ w
1
a-e0" 65-n o

be = < q (K-1)

Y
(1 -e2)'2 6i cos 62

6i sin &0

K.5 The Use of Position Variation and Velocity Variation to Describe

the Motion in the Reference Trajectory Plane

The first four elements of 6e are related to the motion in the .
reference trajectory plane; the last two are related to the motion normal to
the reference trajectory plane. Since the two types of motion are un-
coupled, they can be studied independently. This section and the one
immediately following will be devoted to a study of the motion in the
reference trajectory plane,

If the elements in the vector on the right-ﬁand side of (I-13) are
replaced by the first four elements of (K-1), the equation may be re-
written in the form shown in (K-2). When the factor 1/(1 - e? cos? E) /2
is considered as part of the 4-by-4 matrix of (K-2), the determinant of
the matrix is unity. Equation (K-3) is obtained by inverting (K-2). The
dashed lines in (K-2)and (K-3) indicate matrix partitioning.
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There is a striking similarity between the elements of the 4-by-4
matrix of (K-2) and the elements of the 4-by-4 matrix of (K-3). The
similarity is made more apparent by partitioning the matrix of (K-2) into

four 2-by-2 matrices as follows:

5 %

> %

. )

> *

' *
In terms of the four A matrices, Eq. (K-3) becomes

.

1
(1 - e2)

be

(1 - ez);2

2
% -n &

\
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The terms of the 4-by-4 matrix of (K-5), which is the inverse of
the 4-by-4 matrix of (K-4), can obviously be obtained from the matrix of
~ (K-4) by inspection. This relationship between (K-4) and (K-5) is not
true in general for any arbitrary selection of orbital element variations;
~ in fact, the grouping of the elements that is being used has been chosen
primarily because it validates the simple relation between (K-4) and
(K-5). - N
When the subscript j is added to each of the A matrices in (K-4)
“in order to indicate that the matrices are evaluated at time tj’ the
equation gives the position and velocity variatio‘r{xs corresponding to
t = tj. Similarly, adding the subscript i to the AT mgtrices of (K.-5)
signifies that the variations in the orbital elements are being expressed
in'terms of position and velocity variations at t = ti‘ If the two resullting ’
equations are combined, the variations in the elements may be eliminated:
and the position and velocity variations at t = t.'l are related to the position
and velocity variations at t = ti‘

.‘ r— 1
r 6pj 6pi
i % [ x T 1 *x* T‘
5q; Ay Ay Ay “n Ay by
A, -A 1la 5

5ij _“Aaj nA,, | “Aa nfu | Vp,

5 : _ ov

ij . ' pi

| . (K-6)
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(K-8)

The primed matrices of (K-8) are the two-dimensional versions

of the corresponding matrices defined in Appendix F,

from (K-7) and (K-8) that

%

M..
ji

*
N..
ji

W

ji

=k

i

139

It is apparent

(K-9)

(K-10)
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These two-dimensional matrix equations are in agreement with the cor-

responding three-dimensional matrix equations of Section F, 7.

K.6 The Use of Two Position Variations to Describe the Motion in the

Reference Trajectory Plane

Another way of expressing the variations in the orbital elements is
in terms‘of the position variations at two different times, ti and tj. This
is accomplished by inverting Eq. (K-13). The expression for the inverse
is simplified to some extent by the introduction of two new angles,

Ep ("E plus'') and Env ("E minus").

1
E, == (E. + E, K-14
5 ( i 1) ( )
Ey =5 (B < E) (K-15)
The determinant of the 4-by-4 matrix of (K-13) is

(de‘c)pq = - 4 X sin EM (K-186)
where X = (3 EM - e sin EM cos EP)(cos EM + e cos EP) - 4 sin EM
(K-17)

The inverse equation is (K-18).

(K-13) and (K-18) illustrate the reason previously mentioned for

selecting the p qz coordinate system. Only two of the sixteen elements
in the matrix of (K-13) contain the secular term; if the rsz system were
used, there would be four elements with secular terms. Eight elements
in the (K-18) matrix have secular terms; with the rs z system there would
be twelve elements with secular terms.

Note that the element -;— %- is unaffected by the secular term.

The factor 1/2 X is common to all the elements in the (K-18) matrix.
Since X is a time-varying quantity that goes through zero, there are com-
binations of Ei and E, for which the matrix of (K-13) become singular;

for these combinations (K-18) cannot be evaluated.
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The remarks about X are also applicable to sin EM. Whenever

sin EM equals zero, the (K-13) matrix is singular, The significance of
the singularities is discussed in Appendix O.

K. 7 Motion Normal to the Reference Trajectory Plane

The position and velocity variations along the z-axis are

6z y -X ] 6i cos 69
= (K-19)
6vz vy v, 8 sin 692
r 3 r N
& ( 2. Y2
- sin E -(cos E - e) (1-e“)'® 6i cos 682
R B S
v, cos E sin E 5 sin 68
| na l1-ecos E 1-¢ecosE
\ J . J .

(K:—20)

The determinant of the 2-by-2 matrix of (K-20) is equal to one,
The inverse of (K-20) is

r 1 N o N r -
| 1-e%)"2 i cos 89 sin E cosE -e | 6z
T-ecos E —
| ] >=2 P9 ’
. ov
.. -cos E . z
o sin 80 ] |TFecos®  SinE ma
\ \ _ J . J
(K-21)
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By combining (K-20) and (K-21), azj and 6vz. are expressed in

terms of &z.i and sz . )
i
( ) ( | sin Ei 1 A ( )
&z, sin E, -(cosE. -¢)|| —m™—— — (cosEi-e) 6zi
l. J J l-e cos'Ei n
< > = ¢ % > < >
ncosE, nsinE. cosE. 1
&v —_ -—— — sin Ei &v,,
zj 1-ecosEj 1--ec:osEj 1-ecosEi n i
\ J \ PAW . J . J
(K-22)
( 2 . Il ()
L 2 sin EM 2 sin EM (cos EM - e cos EP) s
l1-ecos Ei n i
- 2n sin EM cos EM L 2 sin EM v
U-ecosEi)(l-ecos EJ.T 1-ecos E. zZ;
"~ J \. J
(K-23)

Note that when sin Ey =0, i.e., when (Ej - Ei) is an integer
multiple of 360°, 6z5 = 5Zi and 6vz = 6vz , irrespective of the nature
j i
of the variations in the orbital elements.
The variations in the elements may be expressed in terms of 6zi

and fizj by inverting Eq. (K-24). |

r N r 3 s R

tizi 1/2

1 sin E, -(cos E, - e) (1-e%'2 5icos 69

65z, gin E. - (cos Ej -e) 6i sin 6

J \ J L P (K-24)




The determinant of the 2-by-2 matrix is

(det)z §in (Ej - Ei) - e (sin Ej - gin Ei) ' (K-25)

2 8in EM (cos .EM - e cos _EP) | ' (K-26)

The inverted equation is

2,Y2 &;
(1-e“) 6i cos 6Q -(cos Ej-e) cos E; -e -
(det], 6z,
81 sin 6Q - sin E, sin E, —1
j i a
(K-27)
~ The condition for singularity of the matrix of (K-24) is most
easily interpreted when (det)z is expressed in terms of the difference in
true anomalies, (fj - £..)
Ty T
(det)z = 5 -1 8in (fj - fi) (K-28)
a“(1-e9
The matrix becomes singular when
f.-f.=Nmn (K-29)

where N is any integer.
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K, 8

: *
The Transition Matrix C

analytic expressions for the matrices defined in Appendix F,

3

The results of Section K. 5 and K. 7 can be combined to give

In this

sectllc‘m. such gxpreesidns are developed for the elements of the tran-

sition matrix C ji:

6x

3

. * * .
The 3-by-6 matrices Fj and Lj satisfy the equation

r 3
%P
6q
4 b
F
62 j
T
£5vpj Lj
\. y
v
Y
&v
Z.
. J J

r

7
-p 6to

The elements of ﬁ'j and f‘j are given in Eqs. (K-31) and (K-32),
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The inverse of Eq. (K-30) establishes the 6-by-3 matrices

%

*
Ri and Vi'

(le)

de
1
(1-e2) /2

1 6a
9 a

e &
1
(1-e2)72

& sin &9

%*

51
/26

¢ -n 6t

8i cos &0

6z,
i

S (K-33)

The elements of R and V are g1ven in Egs. (K- 34) and (K- 35)

The tran31t10n

mat rix CJ

Q*

i

i

-
*

N
3*
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The matrlx multiplications 1nd1cate>ekd in (K 38) have been performed,
The four resulting 3-by-3 sub- matrices, M.., NJ1
sented in Eqs. (K-39), (K-40), (K-41), and (K 42), Tgken together, these

four sub-matrices constitute the desired solution for C

SJ and TJ , are pre-

It is 1nterest1ng to note that only nine of the s1xteen non-zero

in-plane elements of CJ have secular terms. There is no secular term in

the expression for §p..

The coefficient of 6vp contains no secular

i
term.

K.9

Matrices Associated with Position Variat'ions at Two Different

Times

The matrices of Appendix F that are used in conjunction with a
path deviation vector composed of two position variation vectors are

bl 3 *

Hij’ Hj1’ J, ij’ and K ij* The first two are defined by the following equation;
~ = r 1
1 .
2,/2
(1-e%)°" 6¢-n &t 8p;
be aq.
2.2 !
(1-e°)
1 & i |
\ 5= ( ij ﬁji b2; 0
(K-43)
e b&¢ - 6p;
1
(1- ez) /2 & cos &9 ﬁqj
. &l sin 60 5zj
_ J . J
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* * ' ' . :
Both Hi._and P}d are 6-by-3 matrices. The elements of H are shown in

- Eq. (K-44), HJi may be obtained from H ij by a simple interchange of all
subscripts i and j

Matrices JiJ and Kj relate 6_\!1 to 6_:_'1. and 6_1_'1..

v

"
r

.
éor, + H &r .) (K-45)

(i oo+ By &y

i
% ,
=J.. or +K 6rj _ ~ (K-46)

The matrix products indicated by (K-45) and (K- 46) have been obtained
and are recorded as Egs. (K-47) and (K-48).

| The factor X appears in the denorr,lkmator of each of the in-plane
elements of all four matrices, H ji’ i’ and K ij* The factor (det)
appears in the denominator of all out of - plane elements, Also, there

are elements containing the term 3 EM/sm Ev Therefore, the matrlces
are not applicable when 3‘( or (det)z or sin EM is equal to zero.

N The elements ot" Kij in Eq. (K-48) may be compared with those of
Nji in Eq. S“K-4Q). Let k . be the element in the r-th row and the s-th

. column of Kij‘

- B
SVRLP 0
K k 0
Kijg= ) ¥ Ko 0 (K -49)
0 0k
\ 33 J
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% *
Matrix Nji can be expressed in terms of the elements of Kij‘

r'
-~k k 0
4X sin By 22 12
* —y : ' '
= - . (K-50)
TR n ka Ry o »
0 0 g
33 )
.
% *
Equation (F'-34) indicates that Kij is the inverse of Nji' There-
fore,
K. N I (K-51)
Kiy Niu= 1§

: * %k o
The off-diagonal elements of Kij N.'ii are easily verified as being zero

from (K-49) and (K-50). It is also obvious that the element' in the third
row and the third column is unity. The equation for either of the other
two diagonal elements yields a simple relationship between the k's and
the factor X,

4 X gsin E

M _ .
: v nz
kjj kgg - Kip ko = - gxgm e (K-53)

M
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The combmatmn (k11 99 " 12 21) is the determinant of the 2-by-2
sub-matrix of K ij which relates to motion in the plane of the reference
trajectory, The determinant of the sub-matrix is equal to

: %
Then the determinant of the 2-by-2 sub-matrix of Nji is

4XsinEM
—

n

The quantity - 4 X sin EM has been encountered once before, in Eq. (K-16),
where it was indicated as the determinant of the 4-by-4 matrix of Eq. (K-13).

K.10 . Checks of the Matrix Elements
Some of the equations developed in Appendix F for the n-body

problem may be used as a check of the validity of the matrix formulations
of Sections K. 8 and K.9. In particular, Eqs. (F-75)through (F-79) may be
checked by inspéction. |

A simple cross-check of ﬁji and Izij was made in the last section.
The author has verified Eq. (K-53) by actually performing the indicated
multiplication of matrlx elements. Equation (F-33) has been used to

check the elements of MJ é i’ and J ij*

Add1t10na1 checks are obtamable from the matrix differential
equations of Section F.5. These include Egs. ('F 51) through (F-54),
(F-57) and (F- 58) (F-63) and (F-64), and (F-69) through (F-72). - The
matrices G and W are needed for these checks.
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From Egs. (E-19), (B-81), and (B-82),

@ N
1
1- e2 (1- e2) /2e sinE 0
2 1 %
*
G= n — $ TS 5 Q- ez) /2e sinE ezsian 0 - 13 }
(1-ecosE) 1-e“cos”® E

0 0 0

k o
(K-54)

The angular velocity of the pqz coordinate system is 'gy_z. From
Eqs. (B-80) and (F-44), the W matrix is given by

0 -1 0
1
a2
* -
W = n(l-e”) . 1 0 0 (K-55)
(1+ecos E)1 -e cos E)
0 0 0

The differential equation checks have not actually been carried out
analytically, although spot checks have been made for some of the elements"
in Eqs. (F-63) and (F-64). In general, the equations serve as a ''back-up"

in case any element of any matrix is open to question,

162




APPENDIX L
FIXED-TIME-OF-ARRIVAL GUIDANCE

L.1 Summary

When the destination point is fixed in space and time, the
required velocity correction may be expressed in terms of the
predicted position variation at the destination by means of the
simple matrix equation

% -
Cp=- KCD 6£D (L-1)

where [ is the velocity correction vector for fixed-time-of -
arrival guidance. § p is the position variation vector at*the des-
tination which would exist if no correction were applied. KCD is
a 3-by-3 matrix which can be evaluated numerically for the many-
body problem and can be determined analytically for the two-body
problem.

L.2 The Velocity Correction

The basic assumption in the guidance theory to be developed
is that all variations from the known reference trajectory are
small. This assumption holds both before and after the application
of a velocity correction. Consequently, the correction itself must
be a small quantity.

The velocity correction is assumed to be the result of a
thrust impulse, At the time of the correction, the thrust impulse
causes an impulse in vehicle acceleration, which in turn produces
a step change in vehicle velocity. The correction causes no
instantaneous change invehicle position.
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The subscript C appended to a time-varying quantity s.ig_nifies
the value of the quantity corresponding to the time of application of
the correction. The superscripts - and + are used,respectively, to
indicate conditions existing before and after.the correction.

The position and velocity variations at the instant after the
correction ¢ are related to the variations immediately before the

correction as follows:

6£C- (L-2)

6XC =6XC +c (L-3)

These two relations may be combined into a single equation by use

of the six-dimensional véctor 65.

N )
r6£C+ 93
5§C+=< FEexa v 7 (L-4)
6XC+ c
— W, . -/

From Eq. (L-3) the velocity correction is given by

+ -
E"SXC -6vC (L-5)

The six quantities constituting 6§C completely define the
variant path of the vehicle in the gravitational field. From Eq. (L-4)
it is apparent that only three of the six can be altered by the cor-
rection c; hence, only three mathematical conditions can be satisfied
by the correction. Many different guidance schemes may be formu-
lated by the simple expedient of varyingthe conditions to be satisfied
by c.
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L.3 ' The Velocity Correction for FTA Guidance

For some types of missions, the goal is to have the vehicle
arrive at a fixed point (the destination) in heliocentric space at a
fixed time. This type is known as a fixed-time-of-arrival (FTA)
mission,

The three mathematical conditions to be met in an FTA
mission are obviously those involved in reducing to zero the three
components of position variation at the destination. In mathematical
language, it is desired that ’

6£‘D+a 23 (L-6)
where the subscript D refers to conditions at the time of arrival at
the destination, :

The problem now is to determine ¢ i, such that Eq. (L-8)
is satisfied, Equation (F-29) is used to get expressions for bzc'
and GXC"', from which ¢ i may be obtained by use of (L-5).

- % - % - :

6vo = Jopére +Kep brp (L-7)
+ % + % +
éve =Jdopbre +Kepdrp (L-8)
* -

= JCD 6£C (L.-9)

+ _ % - .
EF=6!C "SXC = —KCD 6£D (L-10)

It is interesting to note that, although six quantities are needed
to specify completely the vehicle's variant path, only three quantities
are required to determine the velocity correction vector in FTA
guidance. This fact can effect an appreciable saving in computation.
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A simple logical argument can be made for the validity of
Eq. (L-10) without recourse to mathematics. Since the objective of
the guidance system is to reduce ér D to zero, it is obvious that
¢ must be zero if 8r " is zero, and ¢, must be non-zero if ér "
is non-zero. Therefore, the correction depends on 6r, and is
not affected by any characteristics of the variant path that are
independent of ér D-‘ ~

The velocity correction does not, and indeed it cannot,
‘cause the vehicle to return instantaneously to the reference tra-
jectory, inasmuch as such a procedure would require that six,
rather than three, conditions be met (i.e., 6£C+ =0, év C+ = 0).
What the correction does accomplish is to set the vehicle on a new
variant path which intersects the original variant path at t = tC
‘and intersects the reference path att = tD' This concept is

illustrated in Fig. L. 1.

L.4 Velocity Variation at the Destination
The impulsive thrust correction which nullifies the position

variation at fhe destination does not have the same effect on the
velocity variation, From Eq. (F-29), after the correction is
applied, the residual velocity variation at the destination is

+ _* + k. +
8vp =JIpcdrp *Kpodre (L-11)
Equations (L.-2) and (L.-6) are substituted into (L-11).
+ _X - .
6vp = Kpeodre | | (L-12)

Thus, for a path deviation vector composed of ér C- and
6r D-’ oy D+ depends only on that part of the path deviation vector
contained in §r ~, while ¢ depends only on that part contained in
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Q4
nonon

LCD =
LC' =
C'D' =

C'D =

o -
n

Figure

attractive focus (sun)

launch point A ‘ L

point on reference path corresponding to time of correction tC

point on actual path corresponding to time of correction tC

destination pdint

predicted position of vehicle at nominal time of arrival-at
destination if no correction is applied
reference path

actual path from launch to time of correction
predicted actual path if no correction is applied

corrected path

= 6rc+ = position variation at time of correction

predicted position variation at target if no correction is
applied
velocity correction vector

: + - + -
ot bve) = v+ 0V ) = v = by,

L.1 Fixed-Time-of-Arrival Guidance
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Since the most practical method of expressing the character-
istics of the original variant path is in terms of the components of
- . - - -
oxp , it is des1€ab1e to express 6vp, interms of érpy andévp ,
rather than é6r ~ . Such an expression is readily obtained from the

. ¥ -
difference (8v ™ - 6v 7).

bv.t sy =5 . r.T -6 ")+f§ 6r T -6r.)
YD ¥p “‘pc°Ip p ' T8®pc PLc Lc

-, )
= -Jpedrp o (L-13)

% S *
+ - —— _ -
vp =-Jpcdrp *évp = {Ipc I3} éxp

(L-14)

Equations (L-6) and (L-14) may be combined into a single

equation relating 65D+ to éxD-.

sk %k
. O3 O3 i
bxpt = . . o%p (L-15)
“Ipc I

L.5 Change in the Orbital Elements

When the reference trajectory is an ellipse, it may be of
interest to determine the change in the orbital elements caused by
From Egs. (F-1) and (F-2), the original path

the correction Cp-
deviation vector 6e” may be written as

) o

se"= (R,  Vp }éxp" (L-16)
* % 6r ~

= {Hyp Hpo X € (L-17)
6£D-
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After the corrective thrust is applied, the path deviation vector
becomes

s E

CD 6_r_c' (1.-18)

The change in the variations of the orbital elements is

+ - * -
be -be = - HDC 6£D (L-19)

Like Cps (6g+ - 63-) depends on 6£D_ and no other para-
meters of the original variant trajectory. The close relationship
between g and (63"’ - 6e ") is clearly shown by means of Eq. (F-17).

_ +‘ _=>:< +- - )
EF-GXC 6y_c LC (6e 6e ") (L-20)

Equations (L-10) and (L-19) can be combined to obtain a

reiationship that is the inverse of (L-20). Equation (F-34) is used
to simplify the result.

+ -_*x ol | -
b’ -8e” =HpcKep " cp = HpcNpc ep (L-2D)
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L..6 Method of Numerical Evaluation

Once 63])- has been determined, the correction c c):korresponding
to any given tC can be computed as soon as the elements of KCD have
been evaluated. «

For the many-body problem the elements of KCD are computed
by numerical integration, as shown in Section F,6. In accordance with
the suggestion made in that section, the equations to be integrated are
simplified by using a non-rotating coordinate system, and the round-off
error is reduced by choosing the z-axis to be perpendicular to the plane
of the basic motion (i. e., the motion that would exist in the absence of
- disturbing forces).

From (F-53) and (F-54), the matrix differential equations are

%
N N

cD

=T (L-22)

3, cD

*
oT x sk
. tCD = G Nop (L-23)

C

These equations are integrated in the negativé time direction, starting
from -tC =tp. For a given reference trajectory, th is a fixed quantity,

and the selected time for applying the correction lies in the range tI to

tp where 'cI is the time of injection. The initial conditions are
* * % *
NDD = O3 TDD = I3 (L-24)

sk
For the non-rotating coordinate system, the elements of GC are
known as a function of tc from Eq. (E-11). The matrix combination
inside the braces on the right side of (E-11), when evaluated at t = t,

%k
constitutes GC .
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The two matrix equations (L-22) and (L-23) consist of eighteen
coupled first-order d1fferent1a1 equatlons in the eighteen variables’
composed of the elements of NCD and TCD' The numerical integration

yields these elements as a function of t.

KDC and KCD are obtained from ﬁCD by simple matrix mani-

pulation,
From (F-34),
* x -]
From (F-179),
* % T * T,-1
KCD = - KDC (NCD ) (L.-26)

If the reference trajectory is an ellipse, there is no need for
the numerical integration. An analytie solution for the elements of
KCD’ in the flight path coordinate system, may be obtained by the
proper substitution of subscripts in Eqs. (K-14), (K-15), and (K-48).

The mechanization of the guidance system does not require a
knowledge of 6v D+‘ However, such knowledge is of value if more
than one midcourse correction is to be applied.

The additional 1n\format10n needed to compute 6vD+ includes the
components of 6y_D and the elements of JDC' 6vD', like 5rD , is
based on the observations made during the course of the flight, The
determination gf '?DC involves a procedure similar to the one described
for evaluating KCD'

For the many-body solution, eighteen additional coupled first-
order differential equations are integrated numerically in the negative

time direction, starting from t = tpe - The eighteen are contained in two

171



matrix differential equations derived from (F-51) and (F-52),

*
dM *
CD _ _
W = SCD (L-27)
%
a5 * ok
CD
T ig = G~ Mpp (L-28)
The initial conditions are
* - % X
MDD = 13 SDD = O3 (L-29)

*
The 'solution contains the elements of M and SCD as a function of tC.

% +CD
JDC is obtained from KCD and MCD by the use of Eq. (F-33).

*

3k %k
= - KpeMep = Kep

T

%
M (L.-30)

36

DC CD

A check on the compuations is afforded by the fact that :ifDC is a
symmetric matrix,

For an elliptical reference trajectory, the analytic form of JDC’
in the flight path coordinate system, comes directly from Egs. (K-14),
(K-15), and (K-47).

Numerical evaluation of the elements of ée, either before or
after the correction, is not necessary for the mechanization of the
guidance system. If for some reason the numerical Values are desired,
the matrlces RD and V are requlred to determine 6e~ from Eq. (L- 17),
and HCD is needed to determme 6e from Eq. (L-18)., Analytical ex-

o Vp
(K-35), and (K-44), respectively,

pressions for R and HCD may be obtained from Eqgs. (K-34),
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APPENDIX M
VARIABLE-TIME-OF-ARRIVAL GUIDANCE

M.1 Summary

When the nature of the space mission is such that the time of
arrival at the destination need not be rigidly constrained, the velocity
correction may be expressed in terms of only two components of the
predicted position variation at the nominal time of arrival. The
correction can be computed in such a way that, for the particular
time of correction selected, the magnitude of the correction is mini-
mized. This method of computation is known as variable-time-of-
arrival (VTA) guidance.

Equations are developed for the velocity correction in VTA

guidance and also for the change in the time of arrival.

M.2  Design Philosophy of VTA Guidance
The concept of VTA guidance is clarified by the introduction

of two new vectors, the relative velocity vector YR and the miss
distance vector §p.

VR is the relative velocity of the space vehicle, on its refer-
ence trajectory, with respect to the destination planet at the nominal

time of arrival at the destination. In mathematical terms,

VR*Yg " Vp (M-1)

where Vg

jectory at the nominal time of arrival and v ., is the velocity of the

is the velocity of the space vehicle on its reference tra-

173




destination planet at that time. Fig. M.1 gives a schematic represen-
tation of v R-

6p is defined as the component of 6£D’ the position variation
vector at the destination, that is perpendicular to v R- It represents
the minimum distance between vehicle and destination point.

The objective of VTA guidance is to reduce 6p to zero. Since
6p lies in the plane perpendicular to YR’ accomplishing this objective
accounts for only two of the three conditions that can be satisfied by
the velocity correction, A third condition must be specified before the
correction can be determined uniquely.

Although there are several practical possibilities for the third
condition, as indicated in References (9) and (10), the only one con-
sidered in this analysis is the minimization of the magnitude of the

midcourse velocity correction.

M.3  Basic Guidance Equations for VTA Guidance

The change in the time of arrival due to VTA guidance is

designated At The variation AtD, unlike the variational quantities

D.
previously discussed, is deliberately inserted into the system; the use
of the symbol A rather than é is intended to emphasize this distinc-

tion. The actual time of arrival at the destination in VTA guidance is

tD + AtD.

Prior to the application of the correction, the predicted velocity

of the vehicle relative to the destination planet at t = tp is v T 5VD-.

After the correction is applied, the relative velocity at t = th is
+

YR *Vp - N

With both AtD and 6XD recognized as small variational

quantities, linear theory gives the following relationship for 6£D+ in

VTA guidance:

+ +
)

rp=- (XR+6XD At

D

= -v AtD (M-2)
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TRAJECTORY OF DESTINATION PLANET

— T < ACTUAL TRAJECTORY OF
SPACE VEHICLE

REFERENCE TRAJECTORY OF SPACE VEHICLE

+ -
vg¥dy,
F
LR
F = attractive focus (sun)
D = destination point on reference trajectory
D' = predicted position of vehicle at nominal time of arrival at -

destination (t = tD)

6_1:D = predicted position variation at t = tp

o
<
1

VD * predicted velocity variation at t = ty

Vo = velocity of space vehicle on reference trajectory at t = tD

<
n

Yp velocity of destination planet at t = tD

YR © relative velocity of space vehicle with respect to destination

1<
|

planet at t = t

“¥s ™ Yp
Figure M.1 Relative Velocity Vector
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In Fig. M. 2, the VTA correction moves the predicted vehicle
position at t = tD from D' to H. The distapce of H from D, the position
of the destination planet at t = tD’ is the magnitude of é6r D+' Note
that 6£D+ is not, in general, equal in magnitude to the component of
6£D in the YR direction.

Figure M. 2 illustrates the basic difference between the FTA
and VTA systems. The correction in FTA guidance is made such that
the vehicle passes through the specific point D at t = t,, while the
correction in the general concept of VTA guidance requires only that
at t =ty the vehicle be situated on the line through D parallel to VR

Let ¢ v denote the velocity correction in VTA guidance.

+ -
Cy =% -dve

G s TR er D s v srl)
=Uepbre +Kepdrp )-Uepdre +Kepdrp
3K + - “
=Kap (6rp" -érp7) (M-3)
=Cp-Ww AtD (M-4)s
where
&
W = KCD YR (M-5)

Equations (M-3), (M-4), and (M-5) are the basic equations of
VTA guidance, independent of the third condition to be satisfied by the

correction vector Cy- Specifying a third condition is analogous to
specifying AtD; when this is done, v is determined uniquely.
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Dl

Figure

nominal destination point

n
n

predicted position of vehicle at t tD if no correction is

applied

predicted position of vehicle at t tD if VT A correction

is applied at t = tC

(]

predicted position variation vector at t = tD if no cor-
rection is applied

miss distance vector

n

component of §ry” perpendicular to YR

= nominal velocity vector of vehicle relative to destination

point at t = tD

. bredicted position variation vector at t = t, if VTA cor-

D

rection is applied at t = tC

M.2 Miss Distance Vector and VT A Guidance

177



M.4  Variation in Time of Arrival

The variation in time of arrival is to be determined such that it
satisfies the condition that the magnitude of ¢y, be a minimum,

From Eq. (M-4),

2 T _ T T T 2 )
Cy Sy Cp Cp-2w cpitptw w (Aty) (M-6)

The partial derivative of CV2 with respect to AtD is equated to zero,
The vectors Cp and w are both independent of AtD.

2 (ey”) T T
The solution of this equation for AtD is
T
wep
Aty = (M-8)
T
v w
M.5 Velocity Correction in VTA Guidance
' Equation (M-8) may be substituted into Equation (M-4),
w W' * oy owl
= - e = I - -
SviEF T T <F (3 T >£F | (M-9)
v w W
T
T . ¥ w \g -
vw
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Equation (M-9) shows the mathematical relationship between
VTA and FTA velocity corrections. It was developed in this form by
Battin (4). |

An interesting result is obtained from the scalar product of ¢ vV
with w,

Jen=0 (M-11)

‘Since neither the vector Cy nor the vector w is in general a zero
vector, it is apparent that Sy is always perpendicular to w. Thus, Cy

—(9)

to the direction of _v_v_ as the '"noncritical direction' and the plane normal

is constrained to lie in the plane perpendicular to w. Noton'”’ refers

to w as the ''critical plane'. .
The vector w depends on KCD’ which is a function of both tC
and tD' For a specified reference trajectory, tD is fixed, but tC
can vary. Consequently, the noncritical direction and the orientation
of the critical plané both depend on the time at which the correction is
. to be made. )
From (M-4), [
AtD is a scalar, the vector w AtD is parallel to w. The other term in the

is the vector sum of Sy and w AtD. Since
vector sum, namely c v is perpendicular to w. Thus, the vector
- triangle, shown in Fig, M., 3, is a right triangle whose hypotenuse is Cp

and ¢ v is simply the component of ¢ F in the critical plane.

M.6  Position Variation and Velocity Variation at the Destination

The position variation ér D+ can be expressed as a function of
8rp by combining Eqs. (M-2), (M-8), and (L-1).

+_-
6_1_'D =-VR AtD
XRWT
=-;_‘.T..::..... EF (M_lz)
v ¥
T
TRE f sr T (M-13)
= r -
ﬂTv_v CD "=D
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Cp © FTA velocity correction vector
Cy = VTA velocity correction vector
w = I’ECD VR * vector in noncritical direction
ItCD = 3-by-3 matrix depending on tC and tD

VR *© relative velocity vector

AtD = change in time of arrival at destination

Figure M.3 Vector Relation between Velocity Corrections in
FTA and VTA Guidance
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The velocity deviation év D+ is

+ + X +
8vy =JIpedrp *Kpedre (M-14)
From Egs. (L-2), (L-12), and (L-14),
* + K - - % * .
Kpc®re =Kpclre={-Jpc I3} xp (M-15)

The final expression for 6XD+ is the result of combining (M-13), (M-14),
and (M-15).

+ * * Yr .‘KT * - -
8vp = -Jpcils- —5— Kep|éZp t8¥p (M-16)
v
A composite equation can now be written in which é6x D+ is
expressed in terms of 6§D-'
~ ~
v WT % %
“~R Z
T Kep O3
v w
6_:5D+= ) : g‘ §Xpy
T
N S S i"
-J I. -
DC\ 3 wl w CD 3
- = (M-17)

-/

This equétion can be compared with Eq. (L.-15), the corresponding
expression for FTA guidance,
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M.7 Change in the Orbital Elements

The six-component vector 6e~, expressing the variations in the

orbital elements before application of corrective thrust, is obviously
unaffected by the type of correction that is contemplated., It can be
expressed in terms of 6§D- or in terms of 6£C- and 6£D-’ as indicated
in Eqgs. (L-16) and (L-17),

. After the correction, the new vector 6_6_!_"' for VTA must differ from

the 6E+ for FTA, since different corrections are applied. For VTA,

- )
6£C
+ b %k
e ={Hgp Hpcl $ ~
5 +
- W,
e 3
T 81
* * Yp¥ x
= {HCD Hhe —7 KCD} < >
wow _
wow br
_ W,
(M-18)

The change in 6e due to the VTA correction is obtained by subtracting
(L-17) from (M-18).
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The analogous equations to (L-20) and (L-21) are valid for VTA,

>.'<

cy = Le (6e - ée) (M-20)
. X L * *
set - se 1 (M-21)

e -de =HpoKop ey = Hpe Npe Sy

M.8  Numerical Evaluation
The number of quantities to be evaluatedfor VTA guidance is

obviously greater than the number in FT{X guidance. Foremost is the
correction Sy Second in importance is 5§D+’ which now includes a
non-zero 6£D+' Third is the change in arrival time, AtD. Finally,
for elliptical trajectories, there is the capability, though not the
necessity, of computing ée " and 6e+
The matrices required for the first three are KCD and JDC’
the evaluation of which has been described in Section L. 6. The new
quantities involved are the vectors VR 2 and w. The former is obtained
directly from the reference trajectory, and the laitter\hcomes from
the majrix product of Eq. (M-5). The matrices Rps Vps and HCD’
needed to evaluate 6_e__ and (6e + - ée ") are obtained from Appendix K.
It is quite obvious that VTA guidance entails somewhat more
computation than FTA guidance. The added steps, however, are simple
ones; they consist primarily of multiplications and additions of
3-by-3 matrices; there are no new matrix inversions, and the additional

divisions all involve the same scalar quantity, _v[T w.
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APPENDIX N

OPTIMIZATION OF TIME OF CORRECTION

N.1 Summary

A new rotating coordinate system, called the critical-plane coordinate
system,' is introduced, in which the VTA velocity correction is expressed
as a two-dimensional vector and the miss distance is also expressed as a
two-dimensional vector. Then the matrix relating the correction vector
to the miss distance vector is reduced to a 2-by-2 matrix. For elliptical
reference trajectories, one of the four elements of this matrix is equal

to zero.

If the two-dimensional miss distance vector is represented by a mag-
nitude and a phase angle, the magnitude of the correction vector is a
linear function of the magnitude of the miss distance vector but varies
in a non-linear fashion with the phase angle of the miss distance vector.
A technique is developed for determining the time of correction as a
func’tion of the phase angle such that the magnitude of the VTA correction
is minimized. '

N.2 Introduction

-Appendix M develops the method of computing the VTA velocity cor-
rectlon corresponding to a given time tC’ but no consideration has yet
been given to the means of specifying t Since the magnitude of the cor-
rection Sy varies with tC’ it is de51rab1e to specify that particular to. for
which the magnitude of c,, is minimized. The minimization procedure is
facilitated by the introduction of the critical-plane coordinate system.

N.3 Critical-Plane Coordinate System

The axes of the critical-plane coordinate system are designated
§C, Nc» and & The §C - Mo glane is the critical plane corresponding
to the given tC' - The §~- axis is in the noncritical direction; i.e., it is
parallel to w. From Eq. (M-5),

' *
w =K

cp YR (N-1)
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* ) .
Since KCD varies with tC’ the critical-plane coordinate system is a

rotating System. Its origin, like that of the three reference trajeciory
systems of Appendix A, is at the center of the sun. The gc-axis lies
along the line of nodes between the critical plane and the reference
trajectory plane. |

In the analysis of Appendix M, it may be assumed that one of the
three reference trajectory coordinate systems described in Appendix A
is used. Let ry,» Ty Tg indicate the three axes of .the particular system
being used. Then Euler angles QC and iC serve to orient the critical- |
plane coordinate system with respect to the r,, ry, ry system. _QC is
the angle measured in the reference trajectory plane from the positive
r,-axis to the positive §C-axis. iC is the angle between the positive rg-
axis (i.e., the z-axis) and the positive t-axis.

The positive Lc-axis is in the direction of w. The positive §C—axis
is chosen as that half of the line of nodes for which QC lies between 0°
and 180°. (& is positive in the direction of vehicle motion.) The positive
ne-axis is such that §C, e LC form a right-handed orthogonal triad.

It may be noted that iC’ as well as QC, lies in the range 0° to 180°.

- N.4 Critical-Plane System Coordinate Axes at Nominal Time of Arrival

The orientation of the critical-plane system coordinate axes depends
on w, which depends on %CD' For all values of to for which the elements
of l-{CD can be determined, the axes are defingd uniquely. However, if
the elements of KCD cannot be determined, some other means must be

used for specifying the axis directions. Such a problem arises when

te = t’P.
KCD is computed from the equation

% _ %* T\ -1
Kep © = <NCD > (N-2)
and NCD is obtained by integration of eighttien coupled first-order dif-

ferential equations. At to = tp the matrix Ny is the zero matrix; hence
it hés no finite inverse, and f{DD cannot be determined.
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A physical, rather than purely mathematical, approach can be used
effectively to attack this problem. If the vehicle's position at tD is along
the line through the nominal destination point and parallel to YR’ the ob-
jective of the VTA guidance system has been attained, and no further cor-
rection is desired. Thus, the non-critical LD—axis is in the direction of
YR’ and the critical plane (i.e., the §D - np plane) is perpendicular to
Yr

For the case of elliptical reference trajectories, a mathematical ex-
- planation is possible. Let tC be very close to tD’ so0 that EM’ which is
equal to half the difference between ED and EC‘ is a small angle. For
small values of E

M’
sin By, = Ey (N-3)
cos By = 1 (N-4)
cos E, = cos (E - 2E,) = cos Ejy + 2EM sin Ep) (N-5)
cos E, = cos (Epy - Ey) = cos Ey + E} 0 8in E ) (N-6)

When these relatlons are substituted into the negat1ve transpose of
Eq. (K-40), NCD for small E,f becomes

21/2
2(1 e’) EM
- 1 - 0
l-e2 cosZED
21/2
13 =_.2(1-e cosED)EM<2(1-e) EM . o b
CDh n 2 2
l1-e< cos ED
0 0 1
. P
(N-17)
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In the limit as tC approaches t

D’
* 2(1 -ecos E) E *
D" ™M

Nep — - A I3 (N-8)
From Eq. (N-2), when tC approaches tD’

K. ' 2 I (N-9)

CD 2(1-ecos ER) E,, 8

When tc = tD’ EM = 0, so that fEDD is given by

* o ‘

KDD = 13 (N-10)

Substitution of (N-10) into (N-1) indicates that the w vector corresponding

to tC = tD is infinite in magnitude and parallel to vn. Therefore, the

tp- axis is parallel to YR in agreement with the result obtained by physical

reasoning.

N.5 Transformation Relations

The 3-by-3 matrix for transforming from ry, Ty, I'g coordinates to
€, n. § coordinates at any specified time will be designated )?

- N
cos §2 sin Q 0
*
X= ¢ -8infcosi cos 2cos i sini ) (N-11)
sin Q sin i — cos 2sin i cos i

%
X is an orthogonal matrix; therefore,

*_ 1 ¥
x1-xT (N-12)

Svubsc_ript W will be used to indicate that a vector is expressed in
terms of its components in the critical-plane coordinate system.
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The vector w for a given tC transforms as follows:

,0 T
%

(Why=Xcw=w¢0 o (N-13)

1

~ #

%
where XC is the transformation matrix evaluafced att = tC. The trans-

formation for VR is

0)
%k
rlw = Xp YR = VRSO ¢ (N-14)
1

*«
Xp is evaluated att = t. (N-13)may be combined with (N-1),

_x % -1 )
Wy = Xc Kep Xp ™! vp)w (N-15)
/Ow ’O\
w<o S =vR§‘< ﬁcn D oS (N-16)
1 1
o P . P
* 7

The matrix product XC CD XD , itself a 3-by-3 matrix, appears
in the equation for (c )W which will be derived in the next section.
Analytic expressions for the elements of SEC §CD {;D can be found in
tfrms of the fixed angles QD and 1D and the time-varying elements of

KCD'
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N Fr);)m (*1:1-16) it can be deduced that the elements in the third column

w

T
of XC KCD XD are 0, 0, and v

gD

Fori =

the r,,Ty and rg axes corresponding to time t

CD

[

= K
.

k

~

11

21

31

i (k T)Wf

T
(kyT)

k

k

k

w

7

12

22

32

R

k

k

k

In order to find the elements in the

13

23

33

AN

7

1, 2, or 3, _151 is a vector with components ki

n
/\

D
. T * - T
) =q%p (& Ky kj)
(k o)y (kS)W}

7
kig kln k1
k3§ k3‘q k3§

7’

(N-17)

1’ ki2’ and ki3 along

(N-18)

kig’ kin’ and kig arg the componentg of _1_<_i- along the §D, p» and Lp axes,

respectively.
rd
k

k)yw= <k
Lk

S
ig

I\

N

(kil sin QD - kiz cos QD) sin iD + ki3 cos iD |
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kil cos S?D + k12 sin QD

- (kil sin% - l«:i2 cos QD) cos iD + k13 sin iD

(N-19)

first two columns of the matrix product, the following notation is introduced:

7



% *
With KCD XDT expressed in terms of the k-components by Equation

(N-18), the next step is to obtain similar expressions for the elements

*
of }:EC‘ The elements of the third row of X . are readily derived.:

c
T
x ={;CT “l)w} = (why Xo
*
= w {0 0 1},XC
* * T
—{KCD Xp" CRly
x ok T
- vR{o 0 1}(KCD xpT) (N-20)

*
The third row of XC is

% ) ..
}XC = {sm QC sini, - cos QC sin iC cos ic}

v * * T
_ R T
= {0 0 1} (KCD XD )

/%.
=)
o
[y

VR :
From (N-20),
w2 = v_vT w = VR2 (klt_,z + kztz + k3g2) (N-22)
1/2
w o 2 2 2
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s
With the aid of (N-21)and (N-23), the entire X matrix can be written as
shown in (N-24). Only the ¢- components of the three k vectors are involved
in X~. Finally, (N-18)and (N-24) can be combined to yield the expression for

% ¥ T .
Xc Kop Xp~ given by (N-25),

¢ ; N
| 2 /2 ( T kg 0
(klc + “2; )
X, =¢ 1 -k, k k,, k K, 2+k,,2 )
C 1/2 1/2 1g 73 2y "3 1¢ 2¢
OISl W VN R
1g 2¢ 1g 2t 3¢
1
L 5 . 5 172 kg kag k3¢ ]
(klg H‘zg +k3g)
- (N-24)
T : 2173 ( kag Mg T Rag e B TR TR 0 )
(klg +k2‘)
s e s o T T . = kgglky g Ky ¢ kg kgg) - g lhyg Ky ¢k kg \
X~ K X L] 72 R . 0 b
crebe ﬁ by P el g fka‘zrka‘a)l “* kg Oy F vk * kg, ey ?rig ? )
1 (l\k*kkfkk K, Kk, +k, kg +ko k k’fk’u’)
L 2)l/z T T St T TR T S 1 1g “in T *ag *an t Xag Kag 1g 13 ¥ /)
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N.6 Velocity Correction

In the critical-plane coordinate systém both the VTA velocity cor-
rection vector and the miss distance vector become two-dimensional
vectors. Therefore, the matrix relating the two must reduc_e to a 2-by-2
matrix. The characteristics of this 2-by-2 matrix are investigated in
this section.

From Equation (M-10),

* x (%  wwl \* 6o -
Cydw=%2cey =~ Xc |3~ =7 >KCD D

T T, «
_ ; >; Xow (W W)y Xo I,z ),2 T 5
c\'3 2 cp D ‘“°Zp 'w
T .
* (W) (W) x % *
- Wy ¥y T -
- (Is " > Xc KepXp Grp Dy
1 0 o0
* x * T.
=0 1 o0 X~ Kop Xp - 6rp 7 )y (N-26)
0o 0 0

When (N-25) is substituted into (N-26), the equation for the VTA correction
may be written as

%
Cxey = Y (6

w P )w (N-27)

The two-dimensional correction vector c.,, consists of the components

W
of Cy in the §C and U’ directions.

" C¢
Cw ={ } (N-28)
' C
n
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(6 p—)W consists of the components of the miss distance vector 6 _g— in the
§D_ and. np directions.

(6p_)W = ' (N-29)

* .

Y is the negative of the 2-by-2 sub-matrix made up of the elements of the
first two rows and the first two columns of ))EC fECD XDT. This is indicated
in Equation (N-30).

. ( kagkig ~ kg ko kagkyn = kigke, )
1 .
* 21, 2 I S T T T S R
(1.; * ko) ‘ - - 173 ( KT TR TR T e T3 3g 1e F1q T 2r 21]) i
thyg” * kyp” + kgp®) 1(2+k2§2) 1g0 * kag?)
(N-30)

The terms in the first row of Y are independent of k3; consequently,
the component of the correction along the line of nodes is not affected by

the elements in the third row of KCD

The matrix Y may be simplified by introducing the angles a and B,
which are defined by the following trigonometric relationships:

sin a = 2§ 73 CO8 a = 1¢ 73
2 2 2 2,1/
(k1§ +k2§ ) | (klg + k2§ )
(N-31)
2, 2.1/2
P 7z P T T L
2 2 2
(k1§ +k2§ +k3§) (klg +k2§ +k3§)
(N-32)
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*
Then Y becomes

- . oo — N
k1_§ sina - kzg CcO8 a k1rl sin a kzﬂ cos a
* .
Y = < (klg cos a+ kzg sin a) sin B (kl'q cos a+t kzﬂ sin a) sin B >
- k3§ cos 8 - k3n cos B
N A
(N-33)

The {-components of the k-vectors no longer appear explicitly. Only the
§-components appear in the first column of ’?; only the n~-components
appear in the second column. These observations may be related to the
velocity correction equation, (N-27), by stating that the coefficients of
6§D_ contain only the §{-components of the k-vectors, while the coefficients

of 611D— contain only the n-components.

N.7 Selection of Time of Correction

Eor a known miss distance vector, the optimum time of correction
is defined as that time for which the magnitude of the required correction

is a minimum.

Let the two-dimensional miss distance vector (& _p_)W be represented
by a magnitude §p and a phase angle Y. Yy is the angle in the §D ~- Mp
plane between the §D—axis and B.p_, From (N-29),

6§D cos Y
(59_)W = =(6p ) (N- 34)

61]D sin Y

The square of the magnitude of the VTA correction is

2 T . T -
Cv " Sw Ew‘(ﬁf W Py

os
= (Gp_)z{cos Y sin W}’;’TS’? {c lp} (N-35)
sin Y




It is apparent that cy varies linearly with 6p , but its variation with
17 ii non-linear. Its variation with tC is also non-linear due to the dependence
of Y on te '
The procedure to be followed in determining the optimum correction
time is to use Equation (N-35)to plot cvlﬁp— as a function of tc for a number
of fixed values of yy. The minimum value of cV/Gp— for a given Y occurs at
- the optimum correction time for that . Finally, cross-plots are made of
<CV/6p_)min and tC opt versus Y. The latter curve defines the optimum cor-
rection time as a function of the single parameter y of the space vehicle's
variant path.

Although Y can have any value between 0° and 360°, only values be-
tween 0° and 180° need be used in the plots, since an increment of 180°
in Y reverses the direction of Sy but has no effect on its magnitude.

N.8 Application to Two-Body Reference Trajectories

F0£ two-body reference trajectories the elements k13, k23, k31, and
k32 of‘K'CD are zll zero. From Equation (N-19), the three (l—{i)W vectors
are given by

Tk ) C k + k. . si A
1¢ 11 €08 &y + k) 5 sin
kdw = < kln > = - (ky, sin @, - k,, cos Q) cos iy >
k (k,, sin ~ k,, cos ) sin i
_Fie | (kyy 80 8= kg5 cos @) sinipy
(N-36)
e N rd . N\
k2§ k21 cos QD + k22 sin %
(l_gz)w =, < kz'fl > = £ - (k21 sin QD - ky, cos QD) cos iy >
\kzc J L (k21 sin Q.D— k22 cos QD) sin iD )
(N-37)
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7 w ( \
k3£ 0 |

kgl = K3n > = T kgg sinip (N-38)

\k3§ y \k33 cos iD/

Then,
k k k o

tan ip = - o = - 28 = 0 (N- 39)

In 2n 3¢

%
The upper right-hand element of Y in Equation (N-30) becomes zero, and

the matrix may be written

O b

. klgsm a—kzgcosa 0
Y =ﬁ >
\(klg cos a+t kzg sin a) sin B (klr; cos at k211 sin a) sin B
7
- k3n cos B
(N-40)
%

The triangular form taken by Y for two-body reference trajectories
indicates that for such trajectories the component of the correction in the
direction of the line of nodes at tC depends on only that component of the
miss distance which lies in the direction of the line of nodes at tp This
partial uncoupling effect is somewhat surprising; it was not anticipated

when the critical-plane coordinate system was originally introduced.

sk

It is of some interest to express the elements of Y in (N-40) in terms
of the fundamental parameters, namely, the elements of ;RCD and angles
SZD and ip. Let Yij be the element in the i-the row and j-th column of Y
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Y11 © k1g sin a - k2€ cos a

= 16 Kag ~ Kot i
1/2
(g * + Ky ) /

= Al- [(ki1 cos Q‘D + k12 sin QD) (k21 sin QD— k22 cos S?D)

= (ky; cos & + k,, sin ) (ki{1 sin €y~ k,, cos Q5]

(k,o k

-

1 .
2 K12 Koy — kyy K9 (N-41)
where
2 2 1/2

+ k2§ )

sin iD

T

1/2
[ (k) sin &y~ k,, cos S'?.D)z + (ky; sin &5 - k,, cos SZD)Z] /

(;\1-42)
Y9y T (k1§ cos a+ky, sin a) sin B
_ kgp (kyg kypt kye kzg)
‘k1§2 + kzgz)l/z. (k, Cz + k2§2 + k3§2)1/,2
kag VR €08 ip . )
e [Geyy cos 8 + k) p 8in Q) (kyy sin = Ky cos G)

* (kg cos & + kyy 8in Q) (ky, sin Q- ky, cos Q)]

2 2

Koy Viy COS i
kg3 vp D
= 12 T Kgg

- k222) sin % cos {ZD

+ (kg y Ky g+ Koy ko) (sin® @)~ cos® 2 ] (N-43)
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From (N-23),

YR _ 2 2 2,— 1/2

= {[ (k,, sin &5 - k,, cos s’ZD)2 + (ky, 8in Q) - k22 cos QD)Z] sin’ i

-1/2
+ k332 cos2 iD}

~1/2
= (% sin® i) + kyy® cos® ip) (N-44)

Yoo = (kln cos a+ k211 sin a) sinpg - k3n cos B

=k +220 oY einp -k
1 cos a -k—l-E sma. sm‘p 3n cos B
kln k_22 .
= ; 21/2 (k1§+RTcL) smﬁ-k3ncosp
(kIC +k2§)
k 1/2

= Ei_z (k1 §2 + kzcz) sin B - 'k311 cos B

A (N-45)
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*
Y for two-body reference trajectories is then

. |
~ = -
a (k1 Koy = Ky koo)

Y

2
 ~ cos 5]

N.9 Evaluation of Parameters

-k

2
12

‘o

| 7~
(N-46)

The two fundamental parameters used in the analysis contained in
this appendix are the orientation angles QD and iD' They can be evaluated

by.means of Equations (N-11), (N-12), and (N-14).
rd / Y . .
le sin Q‘D sin iy 3
=T
vg =S VR2 =Xp " Wplyw = VR < - cos Q) sin iy
\ VR3 \ cos iD /

WV

(N-47)

The components of YR along the ry, ro, and rq axes are known for the
specified reference trajectory. The desired angles are computed from

these components.

VR
1
9y = - arctan.(
1 R2
VR3 \
iD = arccos( = )
R
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The quadrant location of each of the two angles is determined by stipulating

that each lies in the range between 0 and 7 radians.

-
When QD and iD have been evaluated, the transiormation matrix XD

is computed from (N-11). This matrix and matrix KCD’ the evaluation
of which has been discussed in Section L.6, are used to calculate the

components of the three k vectors in the critical-plane coordinate system.

From (N-18),
- N
k1§ kl"l klc
< _ K * T
k2§ k2’q k2c > = KCD XD (N-50)
\k3§ k3'r'| k3§/

%
The elements of Y can then be determined from (N-30) or from
(N-33) used in conjunction with (N-31) and (N-32).

An estimate of the components o*i: GED_ along the rys Iy, and rq axes
is assumed to be available. Matrix XD transforms 6£D— into its com-

ponents along §D, ue and CD axes.

(agD \ - A
(6p7)
* _ _ - - W
Xp 8rp” = (6rp )y = ¢ Sap & = < ) & (N-51)
8¢
~ 6ch- P N~ P

.;:; and (6p _)W are used to compute the components of the VTA velocity
correction along critical-plane coordinate axes by means of Equation -
(N-27). The components of the correction along the r,, r,, and rg axes
are obtained from the equation

%
c=XT

ev=Xe oy (N-52)
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*
Equation (N-24) can be used to compute the elements of XC from the ¢-

components of the three k vectors, which have already been computed.

%
An alternative method of computing the elements of XC’ which serves

as a partial check of the computing procedure, is by means of Equation
(N-13).

C . A K
wy smﬂcsm i
s * T ’
w={ w, > = Kep ¥R = Xo” Wy =w ¢ - cos Qe sin iy > (N-53)
w cos i
. 3/ " C /

The components Wi, Wo, and Wwg are determined, and the angles QC and i
are expressed in terms of these components.

C

Wy

QC = — arctan <Vv?> (N-54)
W3 )

iC = arccos — \N-55)

Both angles are restricted to the range 0 to 7 radians, The elements of
X can be found from the angles by the use of (N-11).

The angle Y, used in determining the optimum correction time, can
be computed from Equation (N-34).

511D-

Y = arctan (N-56)

§D
It has already been pointed out in Section N.7 that only values of Y in the
range0 to 7 radians need beconsidered in the procedure for optimizing the
time of correction; consequently, the angles computed by means of (N-56)
can be restricted to that range.
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The computational procedure is simplified in the case of two-body
reference trajeciories. The matrix ? can be found from QD’ iD’ and
the elements of K, by the use of Equations (N-42), (N-44), and (N-46).
If the alternate form is used to compute SZC and iC’ there is no need to
transform the k vectors into the critical-plane coordinate system.
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APPENDIX O

SINGULARITIES IN THE MATRIX SOLUTION FOR
ELLIPTICAL TRAJECTORIES

O.1 Summary

In the analytical development for elliptical trajectories presented
in Appendix K, it has been shown that the variations in the orbital ele- ,
ments,* represented by the vector 6e, canbe expressed in terms of two
pasition variations 6_1_‘i and ér.. The 6-by-6 matrix relating 6e to 6£i
and 6_1_'3. is obtained by inverting the 6-by-6 matrix through which 6£i
and 65_3. are expressed in terms of be. prever, the latter matrix
becomes singular and hence cannot be inverted, for three different

types of combinations of t. and tj' These three types are

(1) tj—ti=NP

(2) fj—fi=(2N—1)7r

where N is a positive integer, P is the period of the reference tra-
jectory, and the factor X is defined by Eqs. (K-14), (K-15), and (K-17).

This appendix examines the mathematical consequences of the
singularities and interprets them physically. Explanation of the first
two types of singularities is relatively simple. The third type is more
subtle; Lambert's theorem, in classical celestial mechanics theory,
is used in its interpretation.

If the time of midcourse correction is related to the nominal
time of arrival in such a manner that any one of the singularity con-

ditions is satisfied, no finite FTA velocity correction can be computed.
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The use of VTA guidance tends to mitigate the effect of the
singularities. For a correction time corresponding to either the
second or the third type of singularity, a VTA correction of finite
magnitude can be determined. However, if the correction time meets
the condition for the first type of singularity, the magnitude of the

computed correction is infinite even in VTA guidance.

O.2 Preliminary Remarks

When the analytic solution of the guidance problem for elliptical
trajectories was first obtained, it became a matter of considerable
interest to find a physical explanation for the various singularities.
Singularities of the first two types had already been recognized by
Laning and Battin from their numerical studies. (See Pages 201 and
202 of Reference (5)). There is no indication of the singularity at

X = 0 in any of the technical literature that has been reviewed.

The verbal disclosure of the X = 0 singularity was initially
greeted with a degree of skepticism, because, unlike the other types,
it did not have a physical interpretation that was immediately apparent.
Much of the skepticism was allayed when evidence of the existence of
this singularity was found in the computer data used in Reference (5).
It was not until some time later that the mathematical connection
between the singularity at X = 0 and the minimum point on the time-of-
flight curve was proved and a physical explanation of the singularity |

was presented.

0.3 The Singular Matrix

The position variations 6 r; and & -Ej are related to 6e by the

equation

= be=A.. be (O-1)

3k
An analytic expression for the 3-by-6 matrix Fj is given by Eq. (K-31).
6e is defined by Eq. (K-1).
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It is the 6-by-6 matrix Xij’ comprised of l?‘i and ﬁ:j" that becomes
singular under the conditions specified in Section O.1. When this matrix
is singular, the six components comprising & r; and 6r 3 are not linearly

independent, and consequently all the elements of 6e cannot be deter-
mined uniquely. '

The non-zero elements of Kij may be grouped into two sub-
matrices, the first of which is the 4-by-4 matrix pertaining to motion
in the plane of the reference trajectory and the second of which is the
2-by-2 matrix pertaining to motion parallel to the z-axis. A singularity
may occur in either or both sub-matrices. The first four components of
8e are used in conjunction with the 4-by-4 sub-matrix; the last two '

components of 6e are used in conjunction with the 2-by-2 sub-matrix.

Because the two types of motion are uncoupled, if a singularity
occurs only in the 4-by-4 sub-matrix, the last two components of e
can still be evaluated; conversely, if a singularity occurs only in the
2-by-2 sub-matrix, the first four elements of the e can still be

evaluate d.

0.4 Mathematical Study of Singularities at ('cj - ti) =NP

The singularities for which (tj - t,) = N P will be examined first.
Even without mathematical analysis, it is intuitively reasonable to
expect that two position variations obtained at times that are an exact
number of reference periods apart will bear some relation to each

other and hence will not be independent.

In one circuit about the attractive focus, the change in each of
the three anomalies - real, eccentric, and mean - is exactly 27
radians. Thus, when (tj - ti) = N P, the eccentric anomaly difference
is 2N7# r};adians. It may be deduced from Eq. (K-31) that the rank of
matrix A'ij is reduced to four when (t. ~ ti) = N P. The rank of the
4-by-4 sub-matrix is reduced to three, and the rank of the 2-by-2

sub-matrix is reduced to one.

Eq. (K-31) may also be used to show the relation between 6_r:j
and 6 r; for the singularity condition.
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0
% N o
6pj rﬁpﬂ _ A
3 (1 + e cos Ei)lll2
46q.}=<6q.f—<— 2 N7 6a )
J t 2 1/2
(1 - e cos Ei)
612. 6zii
L 3 L J _ 0 J
(0-2)

With the aid of Eq. (B-69), (O-2) may be expressed in terms of the

nominal orbital velocity vy and the nominal period P.

~
- 5 r‘8 W o 0
8P p;
3 Sa
<6qu=<5qi L—<ENPvi— (O-3)
6z, 6z,
j i
Eq. (0-3) can be solved for the third component of ée.
6q. — 6q.
16a_ 247 "% (O-4)
2 a NP Vs

It is interesting that this unique solution for 1%a exists despite the fact

sk
that A..
1]

If ti is associated with tC’

2 a
contains singularities in both of its non-zero sub-matrices.

the time at which the correction is to

be applied, and if tj is associated with tD’ the nominal time of arrival,

Eq. (O-3) becomes
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6pD 6pC
- _ ¢ 3 ba -
{ qy p= <6qs ¢ {ENPVC (0-5)
a
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If a position variation exists in either the Pp or the Zo direction

at time t., that same position variation will exist at time tD irrespective

of the na‘SJre of the path traversed by the vehicle in the N circuits between
'tC and tD' Linear theory does not permit the computation of a velocity
correction which, if applied att = tC’ will cause the position variations
6p and 6z to be reduced to zero whent = tD.
In the special case when ép. = 0 = 8§z, and 8q # 0, it is possible
to compute a velocity correction Cp which will enable the vehicle to
arrive at the desired destination at the proper time. The correction

required to reduce the predicted value of 6qD to zero is such that

§3+=-26q0 - 2 8ac (O-6)
a 3NPVC

The + and - superscripts have been added to distinguish characteristics
of the corrected path from characteristics of the original path. From
Eqs.(O-5) and (O-86),

+ 2 6qp -
sa\"_ _“°d | [sa | (O-1)
a 3NP VD a
so that the change in ba to be provided by the correction is
a
- 268qn

§3. - .é_a_ =_.___I)_..__ (0_8)
a a NP vp

The velocity correction itself for this special case may be found
from Eq. (K-48) and (L-1). ‘

Cw _ n(l-ecosEy) (cos E + e cos Ep) X
cp = Kep 8rp = {6qp ) u
2(1 +ecos Eq) X e

(0-9)
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From Eqgs. (K-14), (K-15), and (K-17), with Ep-Eo=2Nm,
-1 - - - -
EP.E (ED+EC) =En + N7 -‘ED N7 (O-10)
iy - - -
By 7S (Ep - EQ) = N7 (0-11)

X =(3 EM - e sin EM cos EP) (cos EM + e cos EP) - 4 sin EM

= 3 N7 (cos E) * e cos EP) (0-12)

Eq. (B-62),(B-69), and (O-12) are used to simplify the expression
for Cp given by Eq. (0-9).

Cp = (6qn Ju_ = = (6,4 ) u
=F 2 P 7% 3NPavy? D " =qp

(0-13)

'For this special case the correction is in the direction of the
nominal orbital velocity, and its magnitude is inversely proportional
to the square of the nominal orbital velocity.

O.5 Physical Interpretation of Singularities at (tj -t)=NP

The physical interpretation of the singularities at (tj - ti) =NP
will be treated in two distinct phases. In the first phase a reference
trajectory is assumed, and the interpretation is based on linear per-
turbation theory. The second phase is more general; there is no

reference trajectory and no requirement for linearization.

For the first phase, consider a vehicle traveling in an elliptical
orbit which differs only slightly from a known reference ellipse. At
time t, the vehicle's position variation with respect to the reference
ellipse is determined from measurements, and at time tj’ which is
exactly N reference periods later than t;, the position variation is

again determined.

208




Let P be the period of the reference orbit and P' the period of
the actual orbit. If P' = P, it is obvious that ér . must be identical with

6r;. Any difference between § L and 6r. must be proportional to

§P = (P' - P) and to N, 6£j may be expressed as follows:
or. = 6£i - (—Yj + 6_\_rj) N &P (O-14)

The minus sign is due to the fact that an increase in the period causes

-a lag in the vehicle's position.

~ Since § s and 8§ P are both small quantities, linear theory reduces
Eq. (O-14) to ‘

Sr. = 6r. — N v. 6P
—J -1 -)

"

Sr. - Nv.8§Pu
i j j

5£i - N ] 6P u
i (O-15)

Kepler's third law states that P2 is proportional to a3. From,
this law it follows that

8P _3 2a (0-16)
P 2 a
Therefore,
)
t'>£-6r1——-NPv1 —Eqi (O-17)

Eq. (O-17) is exactly the same relationship that was previously obtained
as Eq. (0-3).

The foregoing discussion pertains to the problem of the determina-
tion of orbital elements from two position fixes. It can be directly

related to the problem of applying a. velocity correction at to which nulls
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the position variation at tD' The analysis is the same as that presented
in Section O. 4. Only if the predicted position variation at th is in the ap-
direction can a finite velocity correction be computed by linear theory.

The computed correction for that case is given by Eq. (O-13).

For the second phase of the physical interpretation, a body is
assumed to be moving in an elliptical path about an attractive focus.
There is no a priori knowledge of the body's trajectory except for the
fact that it is an ellipse. At time 'ci the body's position relative to the
focus is measured. At time t, a second set of measurements indicates
that the body's relative position is exactly the same as it was at ti. In
the interval between ts and tj the body has completed N circuits about

the focus.

In this example the observed data consist of the times ti and tj’

the integer N, and the three components of position.

From ti’ tj, and N, it is possible to compute the period P, the

mean angular motion n, and the semi-major axis a.

t. - t.

p=-3 1 (O-18)

N

n - 27 (0O-19)

P
1/3

a = | (O-20)

n2

The semi-major axis is the only one of the six orbital elements that can
be obtained from the available data; all the others are indeterminate.
Eq. (O-20) corresponds to Eq. (O-4) in the development based on

linear theory.

Now suppose that a space vehicle is in an elliptical orbit around
the sun. At time tes when the vehicle is at point C, a velocity cor-
rection is to be applied such that the new orbit will enable the vehicle
to reach the desired destination point D at time tD' The points C and
D are relatively close to each other compared to the distance of either
from the sun. The time interval (tD - tC) is approximately N times
the period of the vehicle's original orbit.
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Regardless of the orientation of the line CD, it is always pos-
sible to find a new elliptical orbit which will enable the vehicle to reach
D at the proper time. The plane of the new orbit must contain vectors
o and r'n and its semi-major axis is determined by the required time

‘interval and the number of circuits to be made between C and D.

If CD'is parallel to —YC-’ the velocity vector at tC before tk'le cor-
rection, the new orbit will closely resemble the old. All that is required
is a small change in the period, which in turn causes a small change in
the semi-major axis. Thus, the velocity correction itself is small in
magnitudé and can be computed from the linear theory. This situation is
represented by the points C, and D in Fig. O.1.

On the other hand, if point C has any arbitrary position in the
vicinity of D, the required new orbit will in general differ drastically
from the original orbit, and the velocity correction will be so large in

magnitude that it cannot be determined from the linear theory.

Two special cases serve to illustrate this point. In the first, the
vehicle is situafced at C2 in Fig. O.1. C2 lies along the radial line
connecting the focus (sun) with D. In this case, the new path is a
rectilinear ellipse; i.e., a straight line of finite length. Obviously,
the velocity correction required to change from an orbit such as the

one indicated in the sketch to a rectilinear ellipse is sizable.

In the second special case CD is parallel to the z-axis; i.e., C
is directly above or below D (out of the plane of the paper) in Fig. O.1.
The new path is then an ellipse in the rn-z plane. If the distance CD
is small, the velocity vector immediately after the correction, Y-C+’ is
perpendicular to position vector res therefore, F C lies along the line
of apsides of the new trajectory, and C is either atperihelion or at aphelion.
It is clear that the magnitude of the correction required to rotate the
trajectory plane through 90° is beyond the scope of the linear theory.

O.6 Mathematical Study of Singularities at (fj ~ fi) =(2N - )7

%
When (fj - fi) =(2 N - 1) 7 , the rank of matrix A'ij is reduced to
five. The rank of the 4-by-4 sub-matrix is unchanged; the rank of the
2-by-2 sub-matrix becomes one. V

Since the 4-by-4 sub-matrix is not singular under these con-

ditions, the four components of e relating to motion in the reference
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F — attractive focus (sun)

D — destination point

Cl,C2 — possible vehicle positions at time of correction
‘—’C— — vehicle velocity vector just prior to application of
correction
I~ — vehicle position vector at destination

tC — time of correction
tD — time of arrival at destination

P — nominal period

Figure O.1 Special Cases of Vehicle Position at Time
of Correction for Singularities at tD - tC = NP
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%K
trajectory plane can be determined from § r; and 6 EJ' even though A.ij
is singular.

The dependence of ﬁzj and t‘>zi is made apparent by use of Eq. (H-15),

6z. .
L =6isin(f, - 69) (0-21)
I. 1
1
With fj =f, + (2N - 1)m,
6z, : '
—J = - 6isin (fi - 69) (0-22)
r.
i v
Then,
r.
ézj = - 6z, (0-23)

r.
1

Obviously, Szi and tSzj cannot be used to obtain the two elements
of & € which describe the variant motion normal to the reference tra-

jectory plane.

If the correction time and the arrival time are such that
(fD - fC) =(2N -1)7, Eqs. (K-48) and (L-1) indicate that a finite

FTA correction can be computed only if 62D = 0. In that special case,

the velocity correction vector cp lies in the reference trajectory plane.

0.7 Physicai Interpretation of Singularities at (f. - fi) =(2N-1)nr
J

Consider a body in an elliptical orbit about an attractive focus F,
as shown in Fig. O. 2. The orbit must lie in one plane; therefore, if the
body passes through point C, it must eventually pass through some point
such as D, which lies on the extension of CF through F. This state-
ment has general validity, irrespective of the nature of the elliptical
trajectory and of the inclination of the trajectory plane. Thus, the
position of the body at D is not completely independent of the position
at C.
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REQUIRED
TRAJECTORY

REFERENCE

TRAJECTORY \

F — attractive focus (sun)

D — destination point

C — position on reference trajectory corresponding to t = tC
c' — -position on actual trajectory corresponding to t = .tC

D' — predicted position at t = tD if no correction is applied
tc — time of correction

tD — time of arrival at destination

Figure O.2 Effect of z-Component of Position Variation when

fD - fC = (2N-1)7
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Suppose that at time tC a vehicle is at point C' and the corresponding
point on the reference trajectory is C. The distance CC 1s parallel to the
~z-axis and small. A correction is to be applied at C' such that the
vehicle will arrive at the prescribed destination point D at time tD'
D will be D'. This
example is similar to the second special case cited at the end of

Section O. 5.

If no correction is made, the vehicle's position at t

Thé corrected trajectory must contain the line segments F C' and |
FD. The plane containing these two segments is the re -z plane, which
is perpendicular to the reference trajectory plane. As stated in Section
O. 5, the magnitude of the velocity correction required to rotate the tra-
jeiétory plane through approximately 90° is beyond the scope of linear
theory and hence cannot be computed by the use of that theory.

Any small velocity correction applied in the z-direction when the
vehicle is at C' has the effect of rotating the trajectory plane about the
axis D' F C'. The size and shape of the orbit are not affected, so that

"the vehicle must pass through D' at time tD'
0.8 . Numerical Example of Singularities at X = 0

The singularity factor X is defined by Egs. (K-14), (K-15), and

(K-17), which are repeated here for convenience.

X =(3 EM - e sin EM cos EP) (cos EM+ e cos EP) - 4 sin E

M
(O-24)
where
1
Ep = —2- (Ej + Ei) (O-25)
E.=1(E. -E.) (0-26)
M 5] i

Unlike the first two types of singularities, those for which X = 0 depend
on the reference trajectory, as indicated by the presence of the eccen-
tricity e in Eq. (O-24).
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Because the formulation for X in Eq. (O-24) may be considered
somewhat formidable, a graph of X versus (E. - Ei) is presented in
Fig. O.3. The plot is made for a varying E,, with e and E.‘i held
constant. The value of e is 0, 25, a typical value for journeys to Venus
or Mars. The angle Ej is 210°, which is representative of an inbound
journey from Venus to Earth or an outbound journey from Earth to
Mars. The plot covers the range 0° to 1800° in (Ej - Ei).

Although Fig. O. 3 is drawn for specific values of e and E_, it
is characteristic of the relationship between X and (Ej - Ei) for any
value of e in the elliptical range and any angle Ej’

There are several interesting characteristics of the curve. It has
the general appearance of a sinusoid whose amplitude is steadily increas-
ing as (E —E, ) gets larger At (E - E, ) 0, both X and its partial

der1vat1ve w1th respect to (EJ - E, ) are equal to zero.

The zero crossings of the curve are of particular interest, since
%
those are the points at which the matrix A‘i' becomes singular. There is
no zero crossing for 0° < (Ej - Ei) <360°. For each succeeding interval

of 360° there is one zero crossing.

As (Ej - Ei) gets large, the curve is dominated by the term

(cos E,, + e cos EP). In the limit as the anomaly difference ap-

3 By M
proaches infinity,

lim ID: S 3 (cos EM + e cos EP)
E, E
M —»o© M
= 3 [ sin (E. —Ei)+e(sin E. - sin E,)]
2 sin Ey J J

(0-27)

The special case of sin E,, = 0 constitutes a singularity of the first type,

M
which has already been discussed, and hence will be ignored in this

analysis.

For large values of (Ej - E,), the singularity occurs when the
limit expression of Eq. (O-27) is equal to zero.
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o
]

sin (Ej - Ei) + e (sin Ej - sin Ei)

sin Ej (cos E; + e) - sin Ei (cos Ej +e)

= 1 [(x; + 2ae) Yy~ (xj +2.ae) y;] (O-28)

a2 (1 - e2)1/2

Then the condition for the existence of the singularity at large values of
(E § E,)) is

yj yi
= (O-29)
xj+ 2ae xi+2ae

The distances (xi + 2 ae)and y; are, respectively, the x and y
components of the distance of the point Pi on the ellipse from the vacant
focus. Thus, when (Ej - Ei) is very large, the singularifcy condition
occurs when the straight line through the points Pi and Pj on the ellipse

passes through the vacant focus.

Table O-1 lists the points at which the first few singularities
occur, as well as the singular point for (Ej - Ei) 00, The symbol N

in the table denotes the number of complete circuits between Ei and Ej‘

For a fixed point Pj’ the effect of increasing N is to move the
corresponding singular point Pi along the ellipse from Pj toward the
point at which the straight line through Pj and the vacant focus inter-
sects the ellipse. The singular point approaches the latter point
asymptotically as N tends toward infinity. The progression of Pi is
illustrated in Fig. O. 4.
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e=0,25
Eo = 210°

C — center of ellipse
F _ attractive focus
F' — wvacant focus
Pj — fixed destination point on ellipse
o’ Pl’ ce e PN ce e Poo— singularity points for each value of N
N — number of complete circuits’ between PN and Pj

Figure O.4 Positions of the Singularities at X = 0
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TABLE O-1
The Singularity Points X = 0 for e = 0. 25 and Ej = 210°

N E-E E; - E; - N360° E, + N360° £, + N360°
0 0° 0° 210° 204°
1 482° 122° 88° 102°
2 860° - 140° 70° 84°
3 1227° 147° 63° 77°
4 1589° 149° 61° 74°
e oo 162° 48° 60°

O.9 Mathematical Study of Singularities at X = 0

The singularities at X = 0 reduce the rank of the 4-by-4 sub-matrix
of Aij to thrge and have no effect on the rank of the 2-by-2 sub-matrix;
'~ the rank of Aij is reduced from six to five. (This discussion of the

singularities for which X = 0 does not apply to the trivial case, Ej - Ei =0.)

‘When X = 0, there must be a linear relationship between Gpi, qu,
Spj, and 6qj. After some algebraic manipulation of Eq. (K-13) and the use
of several of the celestial mechanics relations of Appendix B, this linear

relationship may be written as

_ b .
= - —2—’(3 Ey — € sin Ey, cos EP) (cos Y 6pj + cos y; Bpi)

(0-30)

where b = a (1 - ez)l/2 is the semi-minor axis of the reference ellipse,

When correction time tC and arrival time tD are such that X = 0,
it is possible to compute a finite FTA velocity correction only if BpC

and 6qC are related to each other in the manner defined by setting Gpj
and qu equal to zero in Eq. (O-30) and substituting ﬁpc for 6pi{ 6qC

for qu. The relation between SpC and 6qC is then given by
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6p~ 2r
—< - < (0-31)
6qn b (3 Eyp - e sin By cos Ep)

Eq. (O-31) specifies the ratio of the two components of position
variation at t = tC but does not stipulate any particular value for either.
Thus, when X = 0, a finite FTA correction can be applied only if the
position variation component in the reference trajectory plane at time
te lies along the line defined by Eq. (O-31). In Fig. O.5 this line is

“indicated as ACB.

Let Ko be the angle between line ACB and the qC—axis. Then,

6pC
tan p - = 6—_ (O-32)
qc

Becéuse r'e and b are normally of the same order of magnitude and EM
is large at the singularity points, the angle p C is small. As N gets
larger, b gets smaller, until finally ACB is parallel to the qC-axis
when N approaches infinity. Table O-2 lists Lo asa function of N for

the conditions used in the plot of Fig. O. 3.

By substituting Eq. (O-31) into (O-30), a relation is obtained for
the ratio of the predicted position variation components 6pD- and 6qD-

for the special case when a finite correction can be computed at X = 0.

5P 2r
D_._ D (0-33)
Sap b (3 Ey — € sin Ey, cos EP)

The line defined by Eq. (O-33) is HDK in Fig. O.5. The angle
between HDK and the qD—axis is designated Kp:

6pD_

tan pup = (O-34)

6qD
Table O-2 lists values of bp as well as Beo
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nominal destination point

singularity point corresponding to D

nominal velocity vector at C

instantaneous position of flight path system coordinate

axes att = tC

straight-line locus of points at which a finite velocity
correction can be computed

angle between ACB and q-axis
nominal velocity vector at D

instantaneous position of flight path system coordinate
axes att = tD

straight-line locus of predicted destination points if no
correction is applied at t = tC

angle between HDK and qp-axis

Figure O.5 Special Case for which Velocity Correction Can Be

Computed at X = 0
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Angles Lp and U c are related by the equation

“"fp __p

(O-35)
tan ¥ rC

TABLE O-2

Angles u c and u patXs= 0 Singularity Points

e=0.25 Ej = 210
N 6pC 6pD
6q 6q
C D
1 0.1600 9° -0.1967 11t
4
2 ©0.0833 43 -0.1110 _glo
4 4
' 1, 1.,
3 0.0569 32 -0.0780 -4
4 2
1, 1.
4 0.0437 22 -0. 0602 - 32
2 2
%) 0 0° 0 0°

The velocity correction for the special case is determined by sub-
stituting Eqgs. (O-33) and (K-48) into (L. 1); the resulting equation is
(O-36). The likelihood of the occurrence of a situation in which the cor-
rection given by Eq. (O-36) can be utilized is minuscule. The special

case is of interest only in the academic sense.

0.10 Lambert's Theorem

As an introduction to the physical interpretation of the X = 0
singularities, this section presents a brief summary of Lambert's
theorem and some of its ramifications. The derivation given is based
on thaflc))f Plummer(zg); the ensuing discussion is related to the work of
Battin ',
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‘ cos EM+ e cos EP

sin EM

1
{1 - .2‘60'3 Ec)llz (1-e

2 1/2

cos? Ep) -
6pD

A
©

a8 l(1-02)‘/2(l~econiﬁc)
2 2
62

1
0
(cos EM - e cos EP) ein EM )

(0-38)

The Lambert problem may be stated as follows: A body is moving
about an attractive focus at F in an elliptical trajectory whose semi-major
axis is a. It is desired to find an expression for the time required by the
body to travel from an arbitrary point P to an arbitrary point Q on the tra-
jectory. This expression is to be independent of the eccentricity of the
trajectory. ’

The given data consist of the space triangle FPQ in Fig. O.6 and
the semi-major axis length a. The position of F', the vacant focus, is
not known; neither is the eccentricity e. The known distances FP, FQ,
and PQ are designated r,y, T,, and d, respectively.

The subscript 1 is used for conditions at point P; the subscript 2
is used for conditions at point Q. The time of flight tF is

-ty (0-37)
In this section, EP and EM are given by

E_ = (E2+E1),, (O-38)

P

o je=

EM=

N =

(E, - E,) (0-39)

Three additional angles are used in the derivation. They are de-
fined by the following equations:
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F — attractive focus

F' — wvacant focus
P — initial position
Q — final position

Figure O.6 Illustration for Lambert's Theorem
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cos 1) = e coS EP (O-40)

o =7+ Epp (0-41)

B =7 -Ey (0-42)

With the aid of Eqs. (B-45), (B-55), and (B-62), the time-of-flight

equation may be written as

- El) - e (sin E, - sin El)]

2 :
= —r; (EM - cos 7N sin EM)

3\1/2
- la [(@ - B) — (sina - sin )] (0-43)
[ ,

Eq. (O-43) in itself does not solve the Lambert problem, since
a and B are known only in terms of e. The task now is to express a and
B in terms of the known quantities ry Ty d, and a. As a start, (rl + rz)

and d are found in terms of a, 77, and EM'

r1+r2=a(1 ~ecosE))+all —-ecosEz)
=2a(l - cos” cos EM) (0-44)
2 2 2
=a2(cosE - cos E )2+a2(1-—e2)(sinE - sin E )2
2 1 2 1
- 4a%sin’ 7 sin® By (O-45)
'd =2asin nsinE (O-46)

M
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By first adding Eq. (O. 46) to (O-44) and then subtracting Eq. (O-46)
from (O-44), ‘it may be shown that

r.+r,+d
sinz- g - ————L—— (O-47)
2 4 a

sin -
2

= — (O-48)

The combination of Egs. (O-43), (0O-47), and (O-48) constitutes the
solution of the Lambert problem. By means of the three equations, tF
is determined as a function of (ry +r,), d, and a.

There are two possible sources of ambiguity when Eqs. (O-47) and
(O-48) are used to compute a and 8. The first arises from the sign of
the square root; the second involves the determination of the quadrant of
an angle whose sine is known. The ambiguities may be resolved by
arbitrary definitions in Eqgs. (O-47) and (O-48), and modification of
Eq. (O-43) to accommodate these definitions.

The positive sign is chosen for sin (a/2) and sin (8/2). It is further
stipulated that both a/2 and 8/2 lie in the first quadrant. Then the follow-

ing inequality defines the ranges of a and B:
0<B=<asn (O-49)
Eq. (O-43) must be revised not only because of the arbitrary

definitions of a and B but also due to the fact that there may be N complete
circuits of the focus between ty and to. The revised equation is

.3\1/2
'tF= — [(2N+ 1)z + sgn(sin ¢) (a - sina - 7)
1
- sgn (sin 8) (B - sin B)] (O-50)

The angles fand ¢ are shown in Fig. O.6. 6 is the angle subtended at F
by the initial position P and the final position Q; ¢ is the angle subtended
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at F' by Pand Q. Both 6 and ¢ are positive in the direcsion of the orbital

motion. The symbol "'sgn', or signum, is defined by the relations

sgn(x)=+1 if x> 0

sgn (x) 0 if x=0 (O-51)

sgn(x) =-1 if x <0

Eq. (O-50) can be solved for the proper time of flight for any
combination of P, @, and F except for the case when points P and Q
coincide. In this special case, the signum notation causes an incorrect

result; the correct time of flight is simply N times the period.

There is also a restriction on the semi-major axis; it must be
large enough so that the values of sin2 (a/2) and sin2 (B/2), obtained
from Eqgs. (O-47) and (O-48), are never larger than unity. Thus, the

minimum value of a is

a ., = —-—— = (O-52)

(1)

Battin' =’ has shown that for a giﬁen space triangle FPQ and a
given value of a which is greater than a_in’ there are two possible
elliptical paths from P to Q. These are shown in Fig. O.7. The two
vacant focus positions are F' and F'. The line PQ is the perpendicular

bisector of the line joining F' and F'.

Since the value of a is the same for the two ellipses, they both
have the same period. Kepler's second law states that the radius vector
(from F) sweeps through equal areas in equal times. Then, for each of |
the two ellipses the time of flight from P to Q is equal to the period times
the ratio, for that ellipse, of the area of the sector FPQF to the total area
of the ellipse. If all motion is assumed to be counter-clockwise in
Fig. 0.7, it is apparent that the area ratio for the ellipse whose vacant
focus is F' is less than the area ratio for the ellipse with vacant focus at
%', and therefore, tg, the time of flight for the former ellipse, is less

than ‘{F’ the time of flight for the latter.
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F .. attractive focus

P — initial position
Q — final position
F',F' — two permissible vacant foci for same value of a

AB = CD = 2a = length of major axis of each ellipse
F'F'l PQ; F'E = EF!
¢+ ¢=2m

Figure O.7 The Two Ellipses for a Given Space Triangle and a
Given Length of the Major Axis
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The relation between tn and t~F can be developed mathematically
from Eq. (0O-50). With the exception of the angle ¢, all the quantities on -
the right-hand side of that equation are the same for both ellipses of
Fig. O.17. The coefficient of sgn (sin ¢) in the equation is (a - sina - 7)
which, for a > a in’ is always negative. Therefore, the time of flight
for a value of ¢ less than 7 radians is smaller than the time of flight
correspondmg to ¢ greater than 7 radians. Because the triangles PF'Q
and P F' Q are congruent, the sum of angles ¢ and ¢ shown in the
figure, is 2 mradians. Since the angles are not equal except in the
special case a = a in® One must be less than 7 radians and the other
greater than 7rrad1ans If the tilde notation is associated with the value
of ¢greater than , tF is always greater than tF‘ The difference be-

tween tF and tF

- 3\ 1/2
t -t =2 |2 (T - a + sin a) (0-53)
m

0O.11 Minimum Time of Flight

In this section it will be shown that, for a given space triangle
FPQ, the rate of change of the time of flight with change in semi-major
axis is proportional to the factor X, and consequently a singularity of

the X = 0 type occurs when the time of flight is a minimum.

Figure O. 8 is a plot of tF vs. a for a journey from Earth to
Mars: For such a journey r, = 1 astronomical unit (a.u.), and
ry = 1.524 a.u. Curves are presented for three values of 6 at N = 0
and for the same three values of 8 at N = 1. Figure O. 8 duplicates

the curves of Fig. 3-3 of Reference (1).

It may be noted that the curves corresponding to N = 0 have no
minimum values of tF for any finite value of a. As a is increased
beyond a in’ the two possible values of tF get farther and farther apart,

one continuously increasing and the other continuously decreasing.

Each of the curves for N = 1 has a definite minimum value of

tF; the minimum t_, for each curve occurs at a value of a that is

F
slightly larger than a_in for that curve.
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TIME OF FLIGHT, tg (years)

N

n=.0 a. u.
r, =1.524 a. u.

8= 75°
8= 115°

8= 155°

N L L

A L

1.0 . (N

.2 ) .4

SEMI- MAJOR AXIS, a (a.u)

Figure O.8 Time of Flight for One-Way Trip from Earth

to Mars
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If curves were drawn for values of N greater than one, they would
also exhibit the characteristic of a minimum tp As N gets larger, for a

given 0, the distance between a in and the a corresponding to tF

i .
gets smaller. min
In order to gain further insight into the time-of-flight curves and
their minima, an analytic expression for the slope will be derived. In
this section the notation 8 ( )/9a signifies the partial derivative of the

argument with respect to a, with ry r d, and N all constant. Inasmuch

2}
as there are no ambiguities involved in the differentiation, the expression
for tF given by Eq. (0O-43) will be used rather than the more complicated

Eq. (O-50).

3t 1/2
F .lla [3(a-p>—3(sina—sinp)
da 2\
+2a(1-c05a)a¥'—-2a(1-cosﬁ) ié:l (O-54)
da da

8a /0a is obtained by differentiating Eq. (O-47).

r.+r,+d
Sing COSE- ..8&: - _1_2_.__ (0-55)
2 2 da 2
4 a
9a _ _l1-cosa _ _1,..¢ (O-56)
da a sina a 2

9B /9a is obtained in similar fashion from Eq. (O-48)

_ e ——— = -l tanE (0'57)

Eqgs. (O-56) and (O-57) are substituted into (O-54). After some
trigonometric manipulation, the result is
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at 1/2
_F_1 (a 3(a - B) - (sina - sin p)
da 2 \p :
-4 [tan & —tan & (O-58)
2 2

The tangents of the half-angles in Eq. (O-58) may be replaced in
the following way:

p

-4 tang-tan—
2 2

_4 |l-cosa _1-cosp

sin a sin B

_ _4[sin(a - B) - (sin a - sin B)]

sin a sin B

4 [sin2 (a - B) - (sina - sin [3)2]
[sin (a - B) + (sin a - sin B)] 8in a sin B

8[1 - cos(a-pB)]

sin (a - B) + (sin a - sin B)

(0-59)

Egs. (O-58) and (O-59) are combined.

A l<i>1/2
Btr ] >\

9a sin (a - B) + (sin a - sin B)

.{[3 (a - B) - (sina - sinB)] [sin (a - B) + (sin a - sin B)]
-8[1-cos(a - [3)]} (O-60)

It will now be shown that the quantity within the braces in Eq. (O-60)
is proportional to the singularity factor X.
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From Egs. (0-40), (O-41), and (0O-42),

a-p=2 EM (O-61)

at+f =27 (0-62)

. . + . -
sma—81nﬁ=2cos°‘ Bsmo' B
2 2

= 2 cos 7 sin EM

= 2e cos EP sin EM (O-63)

Egs. (O-61) and (O-63) are substituted into (O-60), and both

numerator and denominator are divided by 2 sin EM.

2)1/2
dtp "
0a cosEM+ecosEP

. [(3 E) - € sin Ey, cos EP)(cos E)p + € cos EP) - 4sin E

(O-64)

The quantity inside the brackets is identical with the expression
for X in Eq. (O-24). Finally,

L\ 1/2
e (2]

F _ K
da cos EM+ecosEP

(O-65)

Thus, it has been proved that the slope of each time-of-flight

curve is proportional to X, and the minimum time of flight, if it exists
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for a particular curve, occurs at the X = 0 singularity point for that

curve.

O.12  Physical Interpretation of Singularities at X = 0

In the preceding section it was shown that the time of flight, as
depicted in the curves of Fig. 0. 8, is insensitive to small changes in
the semi-major axis when X = 0. In this section, it will be proved that,
for a given vector ry and given values of te and N, the vector ryis
insensitive to small changes in the semi-major axis when X = 0, and
consequently it is not possible to apply a small velocity correction at
t, which will alter r,.

Consider a case in which ry, tF’ d, and N are specified, and roy
is'regarded as a function of a. The partial derivative of the time-of-

flight equation, (O-43), is taken with respect to a.

1/2

0=31(2 [(a - B) - (sin a - sin B)]
2 \u
3 1/2 o
+ 2 (1 - cosa) |—
u doa ry, tF, d, N
- (1 - cos B). EE (O-66)

aa rla tF: d: N

The subscript symbols following the partial derivative indicate
the quantities that are being held constant.

From Egs. (O-47) and (O-48), the partial derivatives in Eq.(O-66)

may be expressed as

da .1 ory 2

da ry tF’ d, N 2asina 3a‘ ry tF’ d, N

(O-617)
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o]
(a__ﬂ.) = 1 ( rz) - 4 sinz E.
da 1 tF' d, N 2a sinp da ry tF’ d, N 2

(0-68)

Egs. (O-66), (0-67), and (O-68) are combined and solved for

(Z)rz/aa)r ¢

1) F) d) N :

or
( 2) X (0-69)
doa ry tF’ d, N sin EM

The derivation of Eq. (O-69) involves a division of numerator and
denominator by sin E_ ; therefore, the equation is not valid for the
M ° 0; i.e., when (E2 - El) =2N7 = (f2 - fl)’
In general,for sin EM # 0, the rate of change of roy with a is proportional

to X.

M
special case when sin E

As a second case, consider ry tF’ ro, and N to be specified, and
d to he a function of a. The same procedure as that of the first example

is followed. The equations analogous to Eqs. (O-66) through (O-69) are

1/2
0-3 (E) / [(a - B) - (sin a - sin )]

2 \U
3,1/2
+<_a_> (1 - cos a) (ﬁg_)
7l da/ ry, tg, Ty N
- (1 - cos B) (—Eﬁ) (0-70)
da ry tF’ ry, N
(2&) -1 (3d) - 4sin? &
Ooa rye tF’ Ty, N 2asina da ry, tF’ ro» N 2
(O-171)
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9B -1 || - 4sin® B
da ry tF’ ro, N 2asinp da ry, tF’ ry, N 2
(0-72)
—a—d) - -2 (0-173)
da ry tF’ Ty, N sin n
From Eq. (0-40),
sinn = (1 - e? cos? EP)l/2 (0-74)

Because the denominator term in Eq. (O-73) is obtained by dividing
+ sin2 N by + sin 7, the positive sign must be used for the root in
Eq. (O-74). For values of e less than one, sin 7) cannot be zero, and

hence Eq. (O-73) always produces a finite value of the partial derivative.

Egs. (O-69) and (O-73) indicate that (8r,/8a) r d

an
17 Y 4 N

(0d/va) r N &re proportional to X. For given values of r

1> tpo Ty
tF’ and N, if X = 0, the distances r, and d are unaffected by a small
change in the length of the semi-major axis. From Figure O.6 it is
apparent that, if F and P are fixed points and ry and d are unaffected
by small changes in a, then the point Q is unaffected by small changes
in a. Therefore, under the given conditions, the vector r, is in-
sensitive to small changes in a when X = 0. Vectors ry and r, are

not independent when X = 0,

When small changes in the semi-major axis a are mentioned, it
should not be inferred that the other three orbital elements defining
motion in the trajectory plane are unaffected. The changes in all four
elements must be related in such a manner that the given vector r. is
conserved. Then the conclusion reached in the preceding paragraph
may be géneralized to indicate that, with ry tF’ and N specified such
that X = 0, the position vector r, is not affected by small changes in the
orbital elements defining motion in the trajectory plane.
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Therefore, it is not possible to compute a small step change in
velocity which, if applied at t;, will alter (i.e., "'correct') the position
of the vehicle at t2.

In recapitulation, the developments in the last three sections
establish a connection between the X = 0 singularities, which evolve
from linear perturbation theory, and Lambert's theorem in celestial
mechanics. Whenever there is a minimum in the curve of time of
flight versus semi-major axis length for fixed values of ry, Ty d, and
N, that minimum occurs under conditions for which X = 0. By the use
of partial differentiation on the time-of-flight equation of Lambert, it
has been shown that, for a given r,, the position vector r, is unaffected
by small changes in the orbital elements when X = 0, and consequently
it is not possible to compute a small velocity correction which, if

applied at t,, changes the vehicle's predicted position at t2.

The special case discussed in Section O. 9, for which it is pos-
sible to compute a velocity correction even though X = 0, is not

explained by the analysis that has been presented in this section.

0O.13 Analytic Formulation of the VTA Velocity Correction

It has already been shown that, in general, it is not possible to
compute a finite FTA velocity correction when tC and tD are related in
such a manner that any one of the three types of singularities exists. In
the following sections, the feasibility of applying a finite VTA correction

under these conditions will be investigated.

In the critical-plane coordinate system the relations defining the
VTA correction are Eqs. (N-27) and (N-46), which are repeated here

for convenience.

5% -
ew = Y (63 )W (O-175)

where
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-~ 1

- I
— (kg kgy = kyj koo) 0
A
1 YR : 2 2
—~ —— kgg cos ip [(k11 - kg
A w
;(’: 1 + k 2-k 2)sinﬂ cos -AV—Rk ‘
21 22 D D w 33
+ (ko Koo + Koy koo (sin?
Y11 M2 21 22 RS »)
- 0032 QD)] | |
L J

(O-1786)

In order to emphasize the effect of the singularities, the elements

110 K190 Koo Koo,
and K33, respectively. The new terms are defined in such a manner

kiq: kj9 Koy Koo and kg4 will be replaced by K

that they remain finite even under the singularity conditions. With the
aid of Eq. (K-48), they are expressed as follows:
1

K11 — X sin EM k11

(o}

_ (1+ecosEC)(1+ecosED)(3EM-esinEMcosEP) -4sinEM(cosEMfecosEP)
2(1 - e2 cos2 EC) 1/2 (1 - el 0052 ED) 1/2
(O-117)
1
K12 — X sin EM k12
n
(1 - e2)1/2 (1 - e cos ED) sin2 EM
= — (O-178)
(1 - e2 cos E )1/2(1 ezcos E )1/2
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XsinE, k

A
"
=

21

(1 - 92)1/2 (1 - e cos EC) sin2 EM
=- (O-79)

(1- ezcosEC)l/2 2 1/2

(1-e cosE)

K22 ;—XsmEM k22
='_.(1 —ecosEC)(l -ecosE )(cos EM+ecosE )sinEM
2(1-e2cos E )1/2(1-e2cos E )1/2
(O-80)
K., =+ sin(f. - £ k
33 n D C’ ™33
_ sin (fD -fC)
2 sin EM (cos EM - e cos EP)
2.1/2
- (1 - € ) (0_81)

(1 -e cos EC) (1 - e cos ED)

The terms A and VR/W in Eq. (O-76) can be expressed as functions
of the K's. From Eq. (N-42),

. 2 . 2.1/2
A= [(k11 sin QD -k, cos QD) + (k21 sin QD - k,, cos QD) ] /
- nB_ (0-82)
X sin EM
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where

. 2 . 2.1/2
(0-83)
From Eq. (N-44),
VR 2 . 2. 2 2. ,-1/2
— = (A” sin ip + k33 cos 1D)
w
1 B2 sinziD : K332 cos2 iD —1/2 .
= - 5 5 + 5 (O-84)
n . .
X" sin EM sin” (f_, - fc)

The parameter B, like the K factors, remains finite at the singularity
points. '

*

The elements of Y can now be written in terms of the K's. A
simple form for the upper left-hand term, Y12 is obtained by the use
of Eq. (K-53).

(k koy — kg k )

Y11 12 11 %22

1
A

2
n

4X sinE
= = (0"85)
nB 4B

_— e —— e e — — — L (O-86)

%
1]
=
L.
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where

C = [B2 sin2 (fD - fc) sin2 iD + K332 X2 sin2 EM 0082 iD]I/2 (O-817)

2 2 2 2, .

. 2 2 ‘
+ (K11 K12 + K21 KZZ) (sin QD - cos QD) (O-88)

The effect of each of the three types of singularities on the
*
elements of Y in Eq. (O-86) will now be investigated.

0O.14 Effect on VTA Guidance of Singularities at (tD_-_tC) = NP

When (t - t-)is very close to NP, both sin E,; and sin (f; - fC)
may be equated to €, a small quantity which reduces to zero when

(tD - tC) equals NP, From Egs. (0-10), (O-11), and (O-12),
cosE__ +ecosE_ = (—l)N (1+ e cosE_) (O-89)
M P D
N .
X=(~1) " 3N7 (1 +e cos ED) (O-90)

When € is small, the K factors are given by

_3N7r(1+ecosED)

Kll = (0-91)
2(1 —ecosED)
21/2 2
K12 - (1 - e ) € (0_92)
l + e cos ED
21/2 2
K =’(1 - e ) e (0_93)
21 l1+ecosE
D
Kyq =-§ (—1)N+ 1 (1 - e cos ED) € (0-94)
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Q- e2)1/2

K (0-95)

33 ° "
(1 - e cos ED)

The expressions for parameters B, C, and D are

3N 7(1 +e cos ED) sin QD
sin QD = . (0-986)
2(1 - e cos ED)

B=Ky

Q
1

2 .2, 2,2 2. .1/2
(B” sin 1D+K33 X ‘cos 1D) €

3N7(1+ecosE.)
D 2 . 2 . 2,
[(1 - e cos ED) sin QD sin” iy

2(1 - e cos ED)2-

+4(1 - e2) cos2 i ]1/2 € ' (0-97)

D

3N7(l+ e cos ED) 2

2(1 - e cos ED)

2

D =K11

sin QD cos QD = sin QD cos QD

(0-98)

Because C approachel zero ams (t -t ) approaches N P, the
elements of the second row of § in Eq. (0 86) becomes infinite at the
singularity points. Consequently, ' it is not possible in the general
case to compute a finite VTA velocity correction when (ty - to) is
equal to NP.

There are three special cases in which the vehicle can be made
to reach the proper destination by means of VTA guidance even though
a correction is contemplated at a time such that (tD - tc) = NP. The
first special case is the trivial one which occurs when BrD is parallel
towv Then no correction is required, and the change in the time of

-R’
arrival is proportional to the magnitude of GrD .
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The second special case occurs when § r " is parallel to the

D

orbital velocity vector ¥p- Then

sin QD )

(6p )W = 6qD (0-99)
cos QD cos iD

_ . _ 3 ~ =
1 .
c — 0 sin
£ & ( 4B ) D L i

cw=¢ pnd{——————————— . 6q
-Ww K Dcosi ? D

c 33 D .

7 -B | cos QD cos ip
C B J L
. J - ) 4
(0O-100)

For (tD - tC) very close to NP, the expression for c17 obtained from
Eq. (O-100) is
i n K33 cos iD

- in_ -B? Q - B}
c17 - (D sin D B” cos D) 6qD (0O-101)

It will now be shown that ¢ _, which ordinarily goes to infinity at
a singularity point because the demoninator factor C reduces to zero,
is equal to zero in this special case. c¢_ can be regarded as consisting
of three factors, n K;5 cos iD/B, 1/C, and (D sin Qp - B? cos Qp).
From Eqgs. (O-95) and (O-96) it is apparent that, as long as neither

sin QD nor cos i~ is zero, the first factor is non-zero and finite.

D
Eq. (O-97) indicates that C is an infinitesimal of order €. When terms"
of higher order than € 2 are neglected, the third factor may be treated

as follows:
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. 2 _ 2 2, . 2
(D sin QD - B cos QD) = (K11 - K,5") sin QD cos QD

.2 2 .
+ K Ky (sm QD - cos QD) sin QD

2

- (K,

. 2 .
sin QD -2 K11 K12 sin QD cos QD
+ K222 cos2 QD) cos QD

_ . 2 .
= K11 K12 sin QD - K22 cos QD (0-102)

Since K12 is of order € 2 and K22 is of order €, the third factor is
of order € 2. Therefore, c_, being proportional to the ratio of
(D sin QD - B2 cos QD) to C, is of order €, and hence for the special

case

c, =0 | (0-103)
The component c in Eq. (0-100) is

_nsinQD
c, =——= &
3 4B

qp

n (1 - e cos ED)

= GqD
6 N7(1+ecosEp)
= K an' (0-104)
3NPavy®
The VTA velocity correction vector is
= L - -
Sy 5 (6qD )EgD (O-105)
3NPavpy

where u

: is a unit vector in the 'ED direction.
5D
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Eq. (O-105) can be compared with Eq. (O-13), which is an

expression for the FTA velocity correction for the same special case

(i.e., 631)- is in the ap direction). The magnitude of the correction
is the same for both FTA and VTA guidance; hence there is no propellant

saving when VTA guidance is used. A more interesting result is that

the FTA correction is applied in the ap direction, while the VTA cor-

rection is applied in the §D direction. It is surprising, to say the least,

that two corrections of the same magnitude but seemingly in different

directions achieve the objectives of the two guidance schemes.

This

confusing state of affairs can be clarified by an investigation of the

orientation of the vector w.

<

E3
"
Rt

"Kep¥r © <

-
ki1 VR
p

ko1 VR
p

k33

+ k

+ k

YR

12 YR

22 VR ’

z

q

q

K A

(O-1086)

i
o]
A\

2
Do
p—

<
=
[\M)
[\

When (tp - tC) is very nearly equal to NP,
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2 (1 - ecosED)

(1 - e cos ED)e

V.

n R
w= = 9 > (0-107)
€ 6 N7 (1+ecosED)
(1 - e2)1/2 vRZ
: 2
(1 - ecosE.)
L b J

The only term inside the braces in Eq. (O-107) that contains the
infinitesimal € is the term representing the component of w in the dc
direction. Thus, when (tD - tc) is equal to NP, the w vector, although

infinite in magnitude, must lie in the plane normal to the qc-axis. But

the qC-axis and the qD-axis coincide when (tD - tC) equals NP. There-

fore, regardless of the orientation of the relative velocity vector the
noncritical vector w is perpendicular to the qD-axis when (tD - tc)
equals NP. The §D—axis has been defined as the axis normal to w and
lying in the reference trajectory plane. Since both the qD—axis and the
.§D-axis are in the reference trajectory planer and perpendicular to w,
they must coincide, and consequently Egs. (O-13) and (O-105) give the

identical velocity correction for this special case.

Eq. (0-107) indicates that the Pc component of w changes sign
on each successive circuit of the focus. This would appear to indicate
that w rotates with a period that is twice the period P of the orbital
motion. The rotation of w has not been investigated further in this
study, but it is suggested as a possibly fruitful topic for future work in
the field.

The third special case is the two-dimensional case, in which

both § ZD- aLnd VR are equal to zero. Under these conditions, the v
z

vector lies in the reference trajectory plane. In the critical-plane

coordinate system the CD-axis lies along YR in the reference trajectory
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plane, the gD-axis is perpendicular to YR and in the reference trajectory
plane, and the nD-axis coincides with the z-axis. Since BzD- is taken
as zero, it follows that

anD =0 (0-108)

For a correction at (tD - tc) equal to NP, it has been shown that the
gC-axis is the same as the ap-axis. Thus, the miss distance vector
§p must be parallel to the orbital velocity vector Yo

5p = (8qp ) EED (0-109)

Eq. (0-109) is the defining characteristic of the second special case.
Therefore, both cases have the same solution for [ which is given by
Eq. (O-105).

It is of interest to note the difference in initial hypotheses
between the second and the third special cases. In the second, the
predicted position variation vector & -I-'D- is assumed to be parallel to
yp and the orientation of the relative velocity vector YR is arbitrary.

In the third case, both 6_r_'D_ and vy, lie in the reference trajectory

plane, but each may have any arbi?rary orientation in that plane.

The third case illustrates the pitfalls that may be encountered if
the mathematical model is over-simplified. If a preliminary guidance
study of a journey involving more than one circuit of the focus is based
on a two-dimensional model, that is, a model in which both YR and SED-
are assumed to lie in the reference trajectory plane, the analysis will
indicate that a finite VTA correction can be computed when (tD - tC) =NP,
whereas a three-dimensional model shows that, in general, such a

computation is not possible.

0.15 Effect on VTA Guidance of Singularitiesat (fD - fc) = (2 N-1)7

*
When (fy - £5) = (2N-1)7, kqq is the only element of Ky that
becomes infinite. The factors B and D in Eq. (O-86) are determined
in routine fashion, and factor C reduces to
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C-= K33 X sin EM cos i (O-110)

D

%
The matrix Y becomes

o h

——— ——— o — — —_—— —— — — %

e

(O-111)

A finite VTA velocity correction can be computed when (fD - fc)
=(2N - 1) 7 except for the special case when the relative velocity vector

lies in the reference trajectory plane (that is, cos i = 0),

D
The vector w corresponding to(fD‘ - C) = (2N - 1) r may be expressed

as
r =
k V. + k V.
1 'R 12 'R
1 p q
4 ko1 VR T kg Vg >
w = ‘ P 1 (0-112)
nK33 y
- i R
i s1n(fD fC) z |

Only the z-component of w goes to infinity in the singularity condition.
Therefore, w is parallel to the z-axis, and, depending on the sign of v

R’

iC = 0° or 180° (0-113)
The § C-axis is the z-axis, and the gc " Mo plane is the reference tra-
jectory plane. Thus, the VTA correction vector must lie in the refer-
ence trajectory plane, regardless of the orientation of YR (as long as
‘cos iy f 0).

249



The equation for the VTA correction in the p q z coordinate
system is obtained by substituting Eq. (O-112) into Eq. (M-10),

( =
k11 "R, t ko "Rq
ki1 kg - .
RZ
cy = "< Ko Voo + Koo v Srp
= 21 'R, " 22 'R
ko1 Koo -
YR
A
0 0 0
— -
(O-114)

The z-component of the correction is zero, as required by the
fact that the z-axis is the noncritical axis. The elements in the first two
columns of the matrix in Eq. (O-114) are the same as the corresponding

elements in the matrix of the equation for the FTA correction.

0O.16 Effect on VTA Guidance of Singularities at X = 0

For the singularities at X equal to zero,

C = B sin (fD - fC) sin i (O-115)
%
The Y matrix is
r B
A 0
4B
X {
Y=n {(—— — — — — — — — 3 (O-116)
K33 D cos iD' o
sin (fD - fc) sin iy B2 ]

Parameters B and D are computed from Eq. (O-83) and (0O-88),
respectively.'
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A finite VTA correction can be determined when this type of
singularity occurs except for the special case when the relative velocity

vector is parallel to the z-axis (that is, sini_. = 0).

D
When X = 0, the vector w can be written as

4 : W
Ki1vgr Ko Vg
p q
n
X sin E
M
p q
( ksg 'R, )
L J

Both Wp and wq go to infinity, but W, remains finite. Therefore, the w
vector lies in the reference trajectory plane. The §C - CC plane is the

referehce trajectory plane, the nc-axis is the z-axis, and
i, =90° (O-118)

The direction of w in the reference trajectory plane varies with N, the

number of circuits between tc and tD'

In the general case the correction component along the line of
nodes at tc.(i. e., the ﬁc—component of EW) is affected by only that
component of the miss distance lying along the line of nodes at tD'
Under conditions of the X = 0 singularity the §C-c0mponent of the
correction is the only correction component in the reference trajectory
plane. Therefore, when X = 0, the entire correction éomponent in the
reference trajectory plane is due to only that component of the miss
distance vector which lies along the line of nodes at t. The component
of the miss distance that is in the reference trajectory plane but normal
to the line of nodes must be compensated completely by the component of

the correction that is parallel to the z-axis.
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The X = 0 singularity does not affect the out-of-plane motion of
‘the vehicle. The nature of the VTA correction will now be investigated

for the case when position variation 6r " is parallel to the z-axis. The

D
miss distance vector for this case is

r TN 4

s, 0

(8p )y = 4 ) > = < 52 (0-119)
677D sin i
\ J .

D

From Eqgs. (O-75) and (O-116), the correction is

CE 0
n k33
In vector form,
Evz - k33(62D )E = - k33(6ZD )EZ (0’121)

C

Thus, when X = 0, a position variation in the z direction calls for a VTA
correction in the z direction, and the motion in the reference trajectory
plane is not affected.

O. 17 Physical Interpretation of the Effect of the Singularities on VTA

Guidance

In the past three sections, it has been shown that, in general, it
is not possible to compute a finite VTA velocity correction when a singu-
larity of the first type occurs, i.e., when (tDv - tC) = NP, and it is pos-
sible to compute a finite correction when either of the other two types of
singularities ogcurs, i.e., when (fD - fc)= (2N - 1) 7 or whenX = 0,
This capability is in contrast with the FTA method of guidance, in which
no finite correction can generally be computed when any one of the three
types of singularities occurs.

The key to a physical understanding of the difference between
. the two guidance concepts lies in the fact that FTA requires that the
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vehicle be at the specific point D at time tD’ while VTA has the less
stringent requirement that the vehicle's position at t = th be at any

point near D on a specified straight line which passes through D.

In Fig. O.9, the relative velocity vector YR is not in the refer-
ence trajectory plane. If at time tC = (tD - NP) the vehicle is at some
arbitrary point C1 near D, the required VTA correction is such that
the new trajectory contains the point C, and intersects the line of action
of vector YR at t = tD' In the general three-dimensional case, it is not
possible to find a trajectory which meets these requirements and at the
same time differs only slightly from the reference trajectory. There-
fore, the linear theory does not allow for the computation of a finite |
VTA. velocity correction when (tD - tC) = NP.

In Section O. 14, three special cases are considered. In the
first, the vehicle's predicted position at .t = tD is D', which lies along
the line of action of YR- In this case the time at which a correction is

contemplated is immaterial, since no correction is needed.

In the second special case, the vehicle's position at t = tC is C2,

which lies along the line of action of the orbital velocity vector yp-
This case has already been taken up in Section O. 5 in connection with
FTA guidance. Irrespective of the nature of YR’ the vehicle can be
made to arrive at D at time tD by applying a correction in the direction

of A2y which causes the proper change in the period of the orbital motion.

The third special case occurs when the correction point C1 and
the vector YR both lie in the reference trajectory plane. Then if YR
and Vp are not collinear, the trajectory passingthrough C1 must cross
the line of action of YR and a small correction can be applied in the
direction of YD to ensure that such a crossing will take place at t = tD.
If YR and v are collinear, the trajectory through C1 does not cross
the line of action of v, and it is not possible to compute a small VTA

velocity correction,

253



REFERENCE
TRAJECTORY

F — attractive focus

D — nominal destination point
D' — possible predicted position at nominal time of arrival
at destination

1,Cz — possible vehicle positions at time of correction

¥p - vehicle's nominal orbital velocity vector at time of
arrival at destination

VR ~ vehicle's nominal relative velocity with respect to
destination planet at time of arrival

-t~ =NP

Figure 0.9 VTA Guidance for Singularities at t C

D
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The second type of singularity, for which (fD - fc) =(2N-1) 7,
is due to the vehicle's component of motion normal to the reference tra-
‘ jectory plane. If the z-component of 631)- can be effectively eliminate_d,
a finite velocity correction can be computed. The VTA guidance concept
provides a method of accomplishing this elimination as long as the rela-

tive velocity vector has a non-zero component in the z-direction.

In Fig. O.10, the vehicle's actual trajectory prior to any cor-

rection will cause it to be at point D' at t = t The nominal destination

point is D. The reqﬁirement of VTA guidanc]e) is that the vehicle's posi-
tion at tD lie along the line through D parallel to Vg Since YR is as-
sumed to have a non-zero z-component, a line through D parallel to

YR must intersect the plane of the actual trajectory; the point of inter-
section is D" in the figure. The VTA guidance scheme computes the
D Thus,

the correction is determined in such a way that the plane of the actual

velocity correction required to get the vehicle to D" att =t

trajectory is not altered; the correction vector lies in the plane of the

actual trajectory.

If 6z, =0, the VTA correction computed by Eq. (O-114) is the
same as the FTA correction which would be computed under the same
circumstances. This is consistent with the argument that has just been

presented since, when GzD = 0, the points D and D" coincide, and

hence VTA and FTA corrections are identical.

The third type of singularity, for which X = 0, involves a fairly
complex relationship between the eccentriéity e and the eccentric
anomalies EC and ED. When the delicate balance among these three
quantities which must exist at X = 0 is upset by permitting some leeway
in the choice of a time and place of arrival, it is reasonable to expect
that the singularity will vanish and a finite VTA correction can be

computed.

The X = 0 singularity is a characteristic of the motion in the
Plane of the reference trajectory. It is possible to use FTA guidance
to compute a z-axis correction to a z-axis position variation even when
X = 0. Comparison of Eq. (0O-121) with Eq. (K-48) indicates that VTA
and FTA systems yield the same z-axis correction to a z-axis position
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ORIGINAL

TRAJECTORY D 3, REVISED
/) TRAJECTORY
0 )y el o T =
\
A
v
R
F
'
C_
$=3r
C -C

F — attractive focus

‘C — position on reference trajectory at t = tC

C' - position on actual original trajectory at t = tC

D - position on reference trajéctory att = tD

D' — position on actual original trajectory at t = tD
D'' — position on revised trajectory at t = th
rec - position variation at t = tC
r'p — predicted position variation at t = tD before

correction is applied
Vp — relative velocity vector of vehicle with respect

to destination planet at t = tD

Figure O.10 VTA Guidance for Singularities at fp - fo =
(2N-1)7
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variation when X = 0. Thus, if the predicted position variation at the
destination is entirely in the z direction, the correction of smallest
magnitude that can be made at a time for which X = 0 is the FTA cor-

" rection corresponding to that time, and there is no change in the time
of arrival. In this special case the component of position variation in the
reference trajectory plane is zero, hence there is no need for the
computation of the correction to become involved with the troublesome
aspects of the X = 0 condition. The VTA system automatically takes
‘this fact into consideration and provides a velocity correction which is
parallel to the z-axis.
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APPENDIX P

STATISTICAL THEORY

P,1 Summary

The components of a multi-dimensional random variable are to be
estimated from a redundant set of measurements, associated with each
of which there is some uncertainty. The estimation technique known as
the method of maximum likelihood is used to make the estimate, The
equations of the maximum likelihood method are developed in matrix
form.

The concept of the equi-probability ellipsoid is introduced and is

used as a quantitative indication of the accuracy of the estimate.

P.2 Introduction

The mathematical development of the method of maximum likelihood
presented in the following sections‘ is patterned after the work of Shapiro,(‘l?)
the primary difference being that in the case treated by Shapiro the likeli-
hood equations are nonlinear, while in the present application they are
linear. Asa consequence, a closed-form solution is obtained in this ap-

pendix, whereas such a solution is not possible in the nonlinear case.

The method of maximum likelihood was originally developed by the
British statistician R.A. Fisher. A rigorous mathematical treatment of

/
the method is presented by Cramer.(44)

P.3 Mathematical Preliminaries

The number of measurements to be processed in the estimation pro-
cedure is designated as M. These measurements are collected in a single
M-dimensional column vector m. In the linear analysis the vector used in
the computatiéns is 6 m, Wﬁich consists of the variations of the components of

m from their reference values. Thereferencevalues are computed a priori.

The parameters to be estimated are collected in the column vector x.
The linear analysis leads to an estimate of the variation of each of the
components of x from its reference value. The variation in xis 6x. In
the general case, 6x is an N-dimensional vector, where N is any positive
integer. For the problem of orbit determination N is equal to six.
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For the i-th measurement the linear relationship between Smi and
§x can be expressed as the scalar product of the vector g ; and the vector
6x.

S -
§m, =g, 6x | (P-1)

9; is a six-dimensional column vector whose components are the partial

derivatives of m, with respect to the components of x. The partial deriva-

- tives are known functions of the parameter vector x and the time t;. Inthe

orbit determination problem, they can be expressed as functions of r i and
V;» the space vehicle's position and velocity vectors on the reference tra-
jectory at time t;.

The composite vector 6m is obtained by extension of (P-1),

\ r 3
dm T
o1 d;
L] - *
§m = -y 4 . S ex=QT 5x (P-2)
e T
6mM ﬂM
J . J
. ET . .
where the M-by-6 matrix Q™ is defined by
( T )
4,
QT - { X S (P-3)
T
L M
*T . . X
The transpose of Q™ is the 6-by-M matrix Q.
)'\:
Q = 31 e @ o s o b o o o gM (P..4)

The observed values of the measurements differ from the true values
2 - - - - 3 rJ - ~ . 21 . -
due to inaccuracies in instrumentation. If 6m is the observed measure-
ment variation vector, the measurement uncertainty vector u is defined by

u=6m=- ém (P-5)
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The covariance matrix of measurement uncertainties is

U=u ul (P-6)

Each component of u is assumed to have a Gaussian probability distribu-
sk
tion with zero mean. The elements of U are determined a priori.

P.4 Conditional Probability Density

After a set of measurements has been made, the vector ézn_ is known.
The problem then is to estimate §xon the basis of the known § _1:1'1_ The
most probable value of §x is that value for which the conditional probability
density p (6x | 6m) is a maximum. p (6x | 6_1’?_1) is the probability density

. - o ~
of the vector &§x for the given measurement variation vector 6 m.

Maximizing p (6x | §™) is not analytically feasible. However, the
conditional probability density p(ﬁil 6 x) can be maximized; this probability
density is known as the likelihood function L (6x). The two conditional prob-

ability densities are related by the following equation:

L(6x) = p(6m |6x) = p(6x [6m) . p(sm)

P-17
p(6x) ( )

p(6_r~§ | 6 x)is the conditional probability of obtaining the ér:ﬁ_ vector actually
observed when the vector §x is specified. p(&m)and p(§x)are a priori
probability densities.

The maximum likelihood estimate of 6x is obtained by setting to zero
the partial derivative of L (6x)with respect to each component of x and then
solving the resulting likelihood equations for the vector §x. The maximum
likelihood estimate of §x is designated 6_3_\:_.

From Equation (P-7) it is apparent that the maximum likelihood esti-
mate and the most probable value of §x coincide if both p(§ m)and p(&x)
are independent of 6x.

P.5 The Maximum Likelihood Estimate

» H ! . » -
The observed measurement vector 6m is the sum of a deterministic
function of 6 x and the M-dimensional random variable u.

~ b
6_r_n_=QT 6x +u (P-8)
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Therefore, the likelihood function becomes
L(6_}£)=p(6_ﬁi|6§)=p(y_|6§_) (P-9)
The probability density of u is independent of §x. Then,

L(6x) = p(u) (P-10)

p(u) represents the joint probability density of u;, u

2,.---0.,

Upre The equation for the M-dimensional joint probability density is

p(u) =p(u1, R I

: 75 o (- 1 uTO 1w (P-11)
[ e ™ |81

% k)
where l Ul is the determinant of U,

| Since log [ p(u)] is a monotonically increasing function of p(u), maxi-
mizing the logarithm yields the same value of §x as maximizing p (u) itself
The mathematics is simplified slightly if log [ p(u)] is the function that is
maximized.

log [p(u)] = - —%— 1og[(27r)M |i’k1']
- %.ETI*J—IE_ (P-12)

The first term on the right-hand side of (P-12)is a constant.

The partial derivative of log [p(u)] with respect to x;, one of the com-
ponents of x, is

Sloglp] .. 1 (%4 §1, ,,TH-10u ) (pg3
9 X, ox, - - ox,
. 1 1 1
- . ' T *-10u . . .y . .
The matrix productu™ U ~ _= is a scalar quantity, which is equal to its

0 x.
* i, . k-1, .
transpose., Since U is a symmetric matrix, U ~ is also symmetric., Then
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T T ,
T*-1 du T ¥-1 du su ¥-1
u U = =lu = = U  "u (P-14)
5x1 5xi ox -

When (P-14) is substituted into (P-13)and (P-13) is equated to zero, the
result is

u=0 (P-15)

Since the observed measurement variation vector ﬁ_ﬁ_ is independent
of the components of §x,

T ~ T T

0 (6 -6

a u (6 m m) _ 3 (6m) (P-16)
X4 0 xi axi

The expression on the right side of (P-16) is the negative of the elements
composing the i-th row of the matrix a, which is defined by Equation(P-4).
The six equations correspondingtoi=1, .. . ., 6 in (P-15)can be com-
bined into a single matrix equation

KO o 1

QU "u=0; _ (P-17)

In order to solve the set of simultaneous equations represented by
(P-17) for the maximum likelihood estimate 62, it is necessary to relate
u to 6:}}_. ‘Although (P-5) defines u as being the difference between 65_'})1_ and
6m, a new vector 61/?1__ will now be defined, and u will be taken as the dif-
ference between & ﬁ and 6 _r/ﬁ 6 _rAg is the maximum likelihood estimate of

the true measurement variation vector 6m.

*
st = QT 6% (P-18)
*
u=6m-6m=6m-Q 6% (P-19)

(P-17)and (P-19) are combined and solved for 6_%.

% ¥ -1 %k % K .
s2=QUIQDH QU sm (P-20)
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This is the matrix form of the equation for the maximum likelihood esti-
mate of 6x based on the observed measurements represented by 6 m.

P.6 Uncertainty in the Maximum Likelihood Estimate

Let € be the difference between the estimate 6:_/2 and the true param-

eter variation vector 6x. € represénts the uncertainty in the maximum
likelihood estimate.

N .
€ =6x— 6x (P-21)

€ can be written as a function of the measurement uncertainty vector
u by performing a few simple matrix manipulations of (P-20),

QU 18T sk - & s
=QU  (6m +w) (P-22)
QU 18T (sR-s0 =00 1y (P-23)
e=@QUIEN1Q %‘1_1; (P-24)

P.7 The Equi-Probability Ellipsoid

For an N-dimensional parameter estimate, the joint probability
density of the components of the associated uncertainty vector € is

ple) = - exp (- 3 eTE e (P-26)
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Some useful results are obtained by setting the quadratic form in the
argument of the exponential equal to a constant.

e E €=k (P-27)

(P-27) is the equation of an N-dimensional ellipsoid centered at € = 0.

For a specified value of k, the joint probability density of any point on
the ellipsoidal surface is

p, (e) = 1 exp —-l-{f- (P-28)
L N e 17 p
[enN |B| ]

Because the joint probability density is constant for all points on the sur-

face, the ellipsoid of (P-27)is known as the equi-probability ellipsoid.

The equi-probability ellipsoid is a convenient means of comparing
the accuracies obtained from various estimation methods, If for a given
.k the ellipsoid obtained by one estimation technique lies wholly inside the
ellipsoid obtained by a second technique, the first technique obviously is
more accurate than the second. If the ellipsoids derived from the two
estimation methods intersect, the issue is not so clear-cut; depending
on the distribution of the uncertainties in the measurements, either method
may lead to a more accurate estimate of the parameter vector in a specific
case,

If k2 in Equation (P~-27) is set equal to (N + 2), the resulting ellipsoid

is known as the ellipsoid of concentration. This particular ellipsoid has

the characteristic that, if the joint probability density is constant through-
out the volume of the ellipsoid and zero everywhere outside the surface
of the ellipsoid, the covariance matrix of the resulting distribution is the

same as the covariance matrix E of the original distribution,

Cramér has shown that there is a certain minimum size of the ellip-
soid of concentration, Estimation techniques are compared on the basis
of the ratios of the volumes of their ellipsoids of concentration to the
volume of the minimum ellipsoid. For a linear process with Gaussian
distribution of measurement uncertainties, the ellipsoid of concentration
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obtained by the method of maximum likelihood is equal to the minimum
ellipsoid; therefore, the maximum likelihood estimate is an optimal esti-

mate for such a case.

Another type of equi-probability ellipsbid that is frequently used in
error analysis is that for which k2 =1, This type is known as the error
ellipsoid. All equi-probability ellipsoids are geometrically similar. The
ratio of the axis lengths of the ellipsoid of concentration to the corres-

ponding axis lengths of the error ellipsoid is (N + 2) 1/2.

For a specified value of N, the probability that the uncertainty vector €
falls completely within the error ellipsoid is a constant, For N = 2, the
probability is 0,393; for N = 3, the probability is 0. 199,

P.8 Circular Probable Error and Spherical Probable Error

Another type of equi-probability ellipsoid that is used in error analyses
is the 50% probability ellipsoid, which is defined as the ellipsoid for which -

the probability is 0.5 that the vector € will lie totally within its boundaries.
This concept is particularly useful when N is equal to 2 or 3, for in these

cases it has a simple physical interpretation.

The volume of the N-dimensional equi-probability ellipsoid is

3N (w12
1r2 kN IE| :

V = N (P-29)
r(z— +1)

where I' ( ) represents the gamma function of the argument,
For N = 2 the ellipsoid reduces to an ellipse, and its area is
*
A=qrx? |E| 1/2 (P-30)

The value of k for the 50% probability ellipse is 1.1774. The area of the
50% probability ellipse is

Ay =7 (1.1778)° |E|1/2 (P-31)

When the measurements are carefuily chosen, it is usually possible to

obtain an ellipse whose two major axes are nearly equal in length, Then
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the ellipse closely resembles a circle. The radius of the circle with the

same area as that given by (P-31) is known as the circular probable error

(CPE). The CPE is frequently used as an accuracy criterion for two-

dimensional parameter vectors. From (P-31),

5 11/4

CPE = 1.1774 |E| (P-32)

A similar criterion can be derived for N = 3. The volume of the
three-dimensional equi-probability ellipsoid is

1/2

%
v=% 11 |E| (P-33)
For the 50% probability ellipsoid, k = 1, 5382,
_4 3(%]1/2
Vo 5 = 57 (1.5382)° | & / (P- 34)

where V0 5 is the volume of the 50% probability ellipsoid. When the axes
of the ellipsoid are roughly equal in length, the spherical probable error

(SPE) is defined as the radius of the sphere whose volume is equal to V0 5°

1/6

SPE - 1.5382 |E | (P-35)

The numerical values used in the last two sections have been obtained

(45) (46)

from Burington and May and from Locke.
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